
The State of 
XGBoost: history and 
community overview
Hyunsu Cho
NVIDIA, RAPIDS AI
November 10, 2020



History of XGBoost

• Feb 2014: Initial commit
• Sept 2014: Submission R package to CRAN 
• Aug 2015: First submission to PyPI
• May 2015: Scikit-learn integration
• July 2016: Spark integration
• Aug 2016: Publication in ACM KDD



History of XGBoost

• Dec 2017: Experimental support for NVIDIA GPUs
• Dec 2017: Faster tree construction algorithm (‘hist’) with 

approximate quantiles



History of XGBoost

• Dec 2017: Experimental support for NVIDIA GPUs
• Dec 2017: Faster tree construction algorithm (‘hist’) with 

approximate quantiles
• Dec 2017: Feature contribution with SHAP

Scott M. Lundberg, Su-In Lee,
“A Unified Approach to Interpreting Model Predictions,” NIPS 2017 



History of XGBoost

• Dec 2017: Experimental support for NVIDIA GPUs
• Dec 2017: Faster tree construction algorithm (‘hist’) with 

approximate quantiles
• Dec 2017: Feature contribution with SHAP
• June 2018: First-class support for NVIDIA GPUs
• Aug 2018: New Spark API in style of Mllib
• Jan 2019: Infoworld’s Technology of the Year Award
• Feb 2020: 1.0.0 release, Dask integration





Tim Qian’s star history
https://star-history.t9t.io/

https://star-history.t9t.io/


Recent 
developments 
you should be 
excited about



Faster Performance on multicore CPUs

• Previously:



Faster Performance on multicore CPUs

• Intel contributed to improve performance scaling
• Dec 2018 – Feb 2020

• Result shown in Szilard’s talk



New JSON model format

• Extensible
• Can be inspected by a human
• Easy to write parsers



Dask for Distributed Training

• Lightweight, easy to set up (pip / conda)
• Plays well with common data types, e.g. NumPy, Pandas
• Seamless interface for using multiple NVIDIA GPUs in single or 

multiple machines

with LocalCluster(n_workers=4) as cluster:
with Client(cluster) as client:

bst = xgb.dask.train(client, …)

with LocalCUDACluster(n_workers=4) as cluster:
with Client(cluster) as client:

bst = xgb.dask.train(client, …)



Zero-copy data ingestion

• XGBoost is memory-hungry
• In Python, up to three copies of training data existed in memory!

nom nom nom

NumPy
array

XGBoost
DMatrix

Matrix w/ 
integer 

binscopy copy

(Intermediate format
optimized for training)



Zero-copy data ingestion

• XGBoost is memory-hungry
• In Python, up to three copies of training data existed in memory!
• Solution: consume data zero-copy / in-place.

Currently implemented in GPU algorithm

nom nom nom



Zero-copy data ingestion

• XGBoost is memory-hungry
• In Python, up to three copies of training data existed in memory!
• Solution: consume data zero-copy / in-place.

Currently implemented in GPU algorithm
• DeviceQuantileDMatrix

nom nom nom



Zero-copy data ingestion



Zero-copy data ingestion

• XGBoost is memory-hungry
• In Python, up to three copies of training data existed in memory!
• Solution: consume data zero-copy / in-place.

Currently implemented in GPU algorithm
• DeviceQuantileDMatrix
• DaskDeviceQuantileDMatrix: Zero-copy, with Dask arrays
• Note: input should be GPU arrays already, e.g. cuPy



Zero-copy data ingestion

• XGBoost is memory-hungry
• In Python, up to three copies of training data existed in memory!
• Solution: consume data zero-copy / in-place.

In-place prediction: at prediction time, no need to build DMatrix

bst.inplace_predict(numpy_array)
bst.inplace_predict(cupy_array)



End-to-end Data Pipeline on GPU with RAPIDS
• Use NVIDIA GPUs to accelerate every part of data pipeline, including 

preprocessing, feature engineering
• GPUs can even parse CSV files (!)

“RAPIDS Accelerates Data Science End-to-
End,”
https://developer.nvidia.com/blog/gpu-
accelerated-analytics-rapids/

Iterate faster
Try lots of hyperparameters

https://developer.nvidia.com/blog/gpu-accelerated-analytics-rapids/


End-to-end Data Pipeline on GPU with RAPIDS

• First place in Twitter RecSys Challenge 2020

25x speedup over optimized
CPU implementation

2 min. 18 sec. end-to-end

Benedikt Schifferer, Gilberto Titericz Junior, Chris 
Deotte, Christof Henkel, Kazuki Onodera, Jiwei Liu, 
Bojan Tunguz, Even Oldridge, Gabriel De Souza 
Pereira Moreira and Ahmet Erdem, “Accelerated 
Feature Engineering and Training for Recommender 
Systems.”
https://medium.com/rapids-ai/winning-solution-of-
recsys2020-challenge-gpu-accelerated-feature-
engineering-and-training-for-cd67c5a87b1f

https://medium.com/rapids-ai/winning-solution-of-recsys2020-challenge-gpu-accelerated-feature-engineering-and-training-for-cd67c5a87b1f


GPU-Accelerated TreeSHAP

• Explaining feature contribution via SHAP is valuable but often slow
• Especially pairwise feature interaction

• Use NVIDIA GPUs to accelerate SHAP
Available in Release 1.3.0 (est. end of month)

Rory Mitchell, Eibe Frank, Geoffrey Holmes, “GPUTreeShap: Fast Parallel Tree Interpretability,” https://arxiv.org/abs/2010.13972

https://arxiv.org/abs/2010.13972


Improved testing

• Lots more tests for the C++ code base
• Automated testing farm validates all pull requests
• Make changes with confidence
• Make releases with confidence



Future Roadmap

• Categorical data support
• Share memory pool with other

packages
• Clean up C++ codebase



• Does your business use XGBoost and would like to invest in major 
addition of capability?
• Consider dedicating developer(s) to improve XGBoost long term. E-

mail phcho@nvidia.com if you’re interested
• Many parts of XGBoost need care
• R package
• JVM packages
• Swift/Ruby/Julia bindings

• Also consider making donations toward testing infrastructure

mailto:phcho@nvidia.com

