An Out-of-core
Implementation of
Block Cholesky
Decomposition on A
Multi-GPU System

Lin Cheng, Hyunsu Cho, Peter Yoon, Jiajia Zhao
Trinity College, Hartford, CT

Outline

 Block Cholesky decomposition
e Multi-GPU system
 Out-of-core implementation

* Inter-device communication

* Extension to disk I/O

e Performance

Block Cholesky decomposition

* Widely used matrix
factorization

* Dense linear algebra
routine

 Diagonally dominant,
numerically stable

* Block version
— Cache-aware block size

A=G'G

Procedure: Phase |

AOO

Ao

AOZ

e 0o AO,Q-T

0

Procedure: Phase 1l

AOO

Ao

A02 oo

0

AO, g-1

0

Procedure: Phase 1lI

Aoo A01 Aoz e AO,q-1-
A11 A12 5 A1,q-1
Az | |Azg

,Aq- 1,q-1

Procedure: Repeat

AOO

Ao

AOZ

() AO,C]-7-

k

A11 A12 S A1,q-1
Azl |Asgr
‘Aq-T,q-

=5

k

1

General Purpose GPU (GPGPU)

* Cost-efficient parallel platform

« Many-core approach

Multi-GPU system

* GPU devices maintain separate memory & kernel
Invocations

 Coordination becomes a significant issue
« Memory transfer between devices is costly

» Load-balancing is necessary to achieve high
performance

Out-of-core implementation

* GPU memory as cache for main CPU memory

* Roughly 1/N of matrix were loaded to each device
— Balanced load
— Minimal communication w/ the host
— Write back to main memory only finished parts

» Submatrix size
— small enough to load several of them at once
— large enough to reduce latency

Device 1

The Matrix A on host

0

Ra
Ri
R:
Rz
R
Rs
Rs
Rz
Rs
Rs

e

Inter-device communication

« Happens whenever we transition from one phase
to another

» Data transfer can be costly

* Possible solutions
— Peer-to-peer: 2x fast
— Overlapping of computation and data transfer

* Synchronization is critical.
— CPU threads control GPU devices.
— Between Phases II and III.

Stream 0 Stream 1

Flush Phase I
Do Phase II to Host

Communication to
prepare for Phase III

“
Do Phase III Communication to

prepare for Phase II

Do Phase]
Flush Phase II to

Host

Communication to
prepare for Phase II

Extension to disk I/O

* For larger matrices, use main memory as cache for
disks

* Prefetching, delayed write: exploit locality

%)

Performance

* CPU: dual 24 GHz Intel®
Xeon® quad-core

* Main memory: 16GB

* GPU: four Tesla C2050
graphics cards with 3GB
memory

* CUDA 4.2 Runtime

« 33x compared to PLASMA,
a numerical linear algebra
library for multicore TPU

 Scalable to larger systems

— 65,000 x 65,000 matrix
amounts to 32GB

(sec)

Q

Tim

2000

1500}

1000}

500}

0
0

—8— Our implementation

- -0~ - PLASMA
4
+,
Fd
,
-- - .d
o e ®
4096 8192 16384
Matrix Size

Conclusion

* Our implementation is scalable to very large
systems.

« We streamlined operation across three memory
layers.

« We were able to apply it to image segmentation.

