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Block Cholesky decomposition

• Widely used matrix 
factorization

• Dense linear algebra 
routine

• Diagonally dominant, 
numerically stable

• Block version

– Cache-aware block size
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Procedure: Phase I



Procedure: Phase II



Procedure: Phase III



Procedure: Repeat



General Purpose GPU (GPGPU)

• Cost-efficient parallel platform

• Many-core approach

Host
Device



Multi-GPU system

• GPU devices maintain separate memory & kernel 
invocations

• Coordination becomes a significant issue

• Memory transfer between devices is costly

• Load-balancing is necessary to achieve high 
performance



Out-of-core implementation

• GPU memory as cache for main CPU memory

• Roughly 1/N of matrix were loaded to each device

– Balanced load

– Minimal communication w/ the host

– Write back to main memory only finished parts

• Submatrix size

– small enough to load several of them at once

– large enough to reduce latency





Inter-device communication

• Happens whenever we transition from one phase 
to another

• Data transfer can be costly

• Possible solutions

– Peer-to-peer: 2x fast

– Overlapping of computation and data transfer

• Synchronization is critical.

– CPU threads control GPU devices.

– Between Phases II and III.



Do Phase I
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Extension to disk I/O

• For larger matrices, use main memory as cache for 
disks

• Prefetching, delayed write: exploit locality



Performance
• CPU: dual 2.4 GHz Intel®  

Xeon®  quad-core

• Main memory: 16GB

• GPU: four Tesla C2050 
graphics cards with 3GB 
memory

• CUDA 4.2 Runtime

• 33x compared to PLASMA, 
a numerical linear algebra 
library for multicore CPU

• Scalable to larger systems
– 65,000 x 65,000 matrix 

amounts to 32GB



Conclusion

• Our implementation is scalable to very large 
systems.

• We streamlined operation across three memory 
layers.

• We were able to apply it to image segmentation.


