
An Out-of-core
Implementation of
Block Cholesky
Decomposition on A
Multi-GPU System
Lin Cheng, Hyunsu Cho, Peter Yoon, Jiajia Zhao
Trinity College, Hartford, CT

Outline

• Block Cholesky decomposition

• Multi-GPU system

• Out-of-core implementation

• Inter-device communication

• Extension to disk I/O

• Performance

Block Cholesky decomposition

• Widely used matrix
factorization

• Dense linear algebra
routine

• Diagonally dominant,
numerically stable

• Block version

– Cache-aware block size

𝐴 = 𝐺𝑇𝐺

A G

Procedure: Phase I

Procedure: Phase II

Procedure: Phase III

Procedure: Repeat

General Purpose GPU (GPGPU)

• Cost-efficient parallel platform

• Many-core approach

Host
Device

Multi-GPU system

• GPU devices maintain separate memory & kernel
invocations

• Coordination becomes a significant issue

• Memory transfer between devices is costly

• Load-balancing is necessary to achieve high
performance

Out-of-core implementation

• GPU memory as cache for main CPU memory

• Roughly 1/N of matrix were loaded to each device

– Balanced load

– Minimal communication w/ the host

– Write back to main memory only finished parts

• Submatrix size

– small enough to load several of them at once

– large enough to reduce latency

Inter-device communication

• Happens whenever we transition from one phase
to another

• Data transfer can be costly

• Possible solutions

– Peer-to-peer: 2x fast

– Overlapping of computation and data transfer

• Synchronization is critical.

– CPU threads control GPU devices.

– Between Phases II and III.

Do Phase I

Flush Phase I

to Host

Flush Phase II to

Host

Communication to

prepare for Phase II

Communication to

prepare for Phase II

Do Phase III

Do Phase II

Communication to

prepare for Phase III

Extension to disk I/O

• For larger matrices, use main memory as cache for
disks

• Prefetching, delayed write: exploit locality

Performance
• CPU: dual 2.4 GHz Intel®

Xeon® quad-core

• Main memory: 16GB

• GPU: four Tesla C2050
graphics cards with 3GB
memory

• CUDA 4.2 Runtime

• 33x compared to PLASMA,
a numerical linear algebra
library for multicore CPU

• Scalable to larger systems
– 65,000 x 65,000 matrix

amounts to 32GB

Conclusion

• Our implementation is scalable to very large
systems.

• We streamlined operation across three memory
layers.

• We were able to apply it to image segmentation.

