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* Inter-device communication

* Extension to disk I/O

e Performance



Block Cholesky decomposition

* Widely used matrix
factorization

* Dense linear algebra
routine

 Diagonally dominant,
numerically stable

* Block version
— Cache-aware block size
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General Purpose GPU (GPGPU)

* Cost-efficient parallel platform

« Many-core approach




Multi-GPU system

* GPU devices maintain separate memory & kernel
Invocations

 Coordination becomes a significant issue
« Memory transfer between devices is costly

» Load-balancing is necessary to achieve high
performance




Out-of-core implementation

* GPU memory as cache for main CPU memory

* Roughly 1/N of matrix were loaded to each device
— Balanced load
— Minimal communication w/ the host
— Write back to main memory only finished parts

» Submatrix size
— small enough to load several of them at once
— large enough to reduce latency
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Inter-device communication

« Happens whenever we transition from one phase
to another

» Data transfer can be costly

* Possible solutions
— Peer-to-peer: 2x fast
— Overlapping of computation and data transfer

* Synchronization is critical.
— CPU threads control GPU devices.
— Between Phases II and III.
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Extension to disk I/O

* For larger matrices, use main memory as cache for
disks

* Prefetching, delayed write: exploit locality
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Performance

* CPU: dual 24 GHz Intel®
Xeon® quad-core

* Main memory: 16GB

* GPU: four Tesla C2050
graphics cards with 3GB
memory

* CUDA 4.2 Runtime

« 33x compared to PLASMA,
a numerical linear algebra
library for multicore TPU

 Scalable to larger systems

— 65,000 x 65,000 matrix
amounts to 32GB

(sec)
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Conclusion

* Our implementation is scalable to very large
systems.

« We streamlined operation across three memory
layers.

« We were able to apply it to image segmentation.



