
An Accelerated Procedure for Hypergraph
Coarsening on the GPU

Lin Cheng
Department of Engineering

Trinity College
Hartford, Connecticut, USA 06106–3100

Email: lin.cheng@trincoll.edu

Hyunsu Cho and Peter Yoon
Department of Computer Science

Trinity College
Hartford, Connecticut, USA 06106–3100

Email: {hyunsu.cho, peter.yoon}@trincoll.edu

Abstract—One of the obstacles in accelerating sparse graph
applications using GPUs is load imbalance, which in certain
cases causes threads to stall. We investigate a specific application
known as hypergraph coarsening and explore a technique for
addressing load imbalance. The hypergraph is a generalization
of the graph where one edge may connect more than two nodes.
Many problems of interest may be expressed in terms of optimal
partitioning of hypergraphs where the edge cut is minimized.
The most costly step in hypergraph partitioning is hypergraph
coarsening, the process of grouping nodes with similar connec-
tivity patterns into one node to yield a new hypergraph with
fewer nodes. Hypergraph coarsening proves to be computationally
challenging on GPUs because many hypergraphs exhibit an
irregular distribution of connections. To address the resulting
load imbalance, we explore a novel task allocation scheme to
distribute work more evenly among GPU threads.

I . I N T R O D U C T I O N

A hypergraph is a generalization of a graph where it replaces
edges in a graph with hyperedges that connect multiple vertices.
It provides a key modeling flexibility that enables accurate
formulation of a wide range of computing problems, from
VLSI design [1] to social networks [2] and image classification
[3], [4]. With the popularity of hypergraphs in recent years,
there has been a strong interest to achieve accurate yet effective
partitioning in the hypergraph context.

A weighted hypergraph G = (V,E,w) consists of a set
of nodes V , a set of hyperedges E, and the weight function
w : E → [0,+∞) that assigns a weight to each hyperedge.
Let E = {e0, · · · , em−1} and V = {v0, · · · , vn−1}, where m
and n are the number of hyperedges and nodes, respectively,
and each ei ∈ E is a subset of nodes in V . See an example
hypergraph in Figure 1.

A bipartition of the hypergraph G comprises a subset of
nodes W and its complement W . An optimal bipartition
minimizes the edge cut defined by

EC(W ) =
∑

e∩W 6=∅
e∩W 6=∅

w(e). (1)

Here, we impose a balance constraint so that W and W are
comparable in size, that is, the imbalance coefficient

ε(W ) =
2 ·max{|W |, |W |} − |V |

|V |
(2)

Fig. 1. An example hypergraph with 6 nodes and 3 hyperedges

is made smaller than the prescribed threshold.

The most computationally demanding step in hypergraph
partitioning is hypergraph coarsening, the process of grouping
nodes with similar connectivity patterns into one node to yield a
simpler hypergraph. A typical hypergraph partitioner is known
to spend up to 91% of its processing time on this step [5].

To this end, in this paper, we focus on the hypergraph
bipartitioning problem and present a multi-level hypergraph
coarsening framework amenable to GPUs. Unlike parallel algo-
rithms for CPU, we modify the algorithms significantly based
on GPU threads, resulting in a parallel Mondriaan algorithm
[5], the employment of a family of compiler primitives, as well
as a parallel suitor matching algorithm.

Experiments show that our GPU-based implementation
outperforms the sequential procedure for coarsening for large
hypergraphs. Once a good bipartition of the simpler hypergraph
obtained by coarsening, it is then used to approximate a
bipartition for the original hypergraph. Although we only
consider the case of bipartition in this paper, the problem
is readily generalized to multiple categories via recursive
bipartition.

I I . H Y P E R G R A P H PA R T I T I O N I N G A N D
C O A R S E N I N G

The problem of computing an optimal bipartition of a
hypergraph is known to be NP-complete [6]. We adopt a class
of approximation algorithms called the multi-level paradigm
[1], [5]. First, a series of increasingly coarse approximations to
the full problem is computed until the approximation becomes
so small that computing an optimal bipartition is easy. The
nodes are combined into clusters based on their connectivity
patterns. Second, the solution to the coarsest approximation is
projected to the previous approximation. Finally, the projected
solution is refined to increase the approximation quality. The

978-1-4673-9286-0/15/$31.00 ©2015 IEEE



Input: A weighted hypergraph G = (E, V,w)
Output: A subset W of V and its complement W

1: procedure PA R T I T I O N(E, V,w)
2: if |V | < M then . hypergraph is small enough
3: return B R U T E F O R C E - PA R T I T I O N(E, V,w)
4: end if
5: (V ′, f)← C O A R S E N(E, V )

. f maps nodes to clusters; V ′ is a set of clusters
6: (E′, w′)← A P P LY- C O A R S E N I N G(f,E,w)

. Apply f to obtain approximation G′ = (E′, V ′, w′)
7: W ′ ← PA R T I T I O N(E′, V ′, w)
8: W ← P R O PA G AT E(W ′, f )
9: W2 ← R E F I N E(W,E, V,w)

10: return W2

11: end procedure

Fig. 2. Multi-level paradigm

second and third steps are repeated until a solution for the full
problem is obtained. See Figure 2 for details.

A. Hypergraph coarsening

The central piece of the multi-level paradigm is hypergraph
coarsening. We compute clusters of nodes so that the connec-
tivity patterns are preserved. Nodes that belong to a similar
list of hyperedges should belong to the same cluster. A new
hypergraph is then formed whose nodes are clusters of nodes
in the original hypergraph. The new hypergraph thus has fewer
nodes than the original hypergraph.

We define coarsening of G = (E, V,w) as an order pair
(V ′, f) where V ′ is a set of clusters and f : V → V ′ is a map
that maps nodes to clusters (Line 5 of Figure 2). Later in this
section, we will show how to compute a good coarsening map
f . Once a coarsening map f : V → V ′ is determined, the
corresponding approximation hypergraph G′ = (E′, V ′, w′) is
computed (Line 6). First, we compute the new set of hyperedges
E′ = {e′0, · · · , e′m−1} by

e′i = {v′ ∈ V ′ : ei ∩ f−1(v′) 6= ∅}. (3)

In other words, a hyperedge e′i ∈ E′ contains cluster v′
whenever the corresponding hyperedge ei ∈ E contains some
node belonging to that cluster. Second, we define the new
weight function w′ by

w′(e′i) = w(ei). (4)

Note that this is well-defined because |E′| = |E| = m.

After a partition (W ′,W ′) is computed for the approxima-
tion hypergraph G′ = (E′, V ′, w′) (Line 7 of Figure 2), it is
propagated to the original hypergraph G (Line 8). A partition
(W,W ) of G is finally obtained by

W = f−1(W ′). (5)

B. Refinement

After a bipartition (W,W ) of G is obtained, we refine it for
quality. The Fiduccia-Mattheyses algorithm [1] is a heuristic
algorithm that lowers the edge cut EC(W ) by moving nodes
into and out of W .

C. Connection to weighted graph matching

It remains to determine a good coarsening map f : V → V ′.
To minimize the edge cut EC(W ), we form clusters so that
nodes in the same cluster belong to a similar list of hyperedges,
as nodes are put in the same categories as their clusters.

We first introduce some basic terminology. The node w
is said to be a neighbor of v whenever there is a hyperedge
e containing both. The similarity between nodes w and v is
defined to be the total weight of all hyperedges that contain both
nodes. To compute similarities, we represent G = (E, V,w)
as an m× n sparse matrix A = [aij ] where

aij =

{
1 if vj ∈ ei
0 if vj /∈ ei.

(6)

The similarity between nodes vi and vj is given by the sum∑
vi,vj∈ek

w(ek) =
m−1∑
k=0

akiakjw(ek). (7)

Here, we use the fact that aki and akj are both 1 if and only
if both vi and vj belong to hyperedge ek. Define the weighted
dot product 〈·, ·〉w by

〈ai, aj〉w =
m−1∑
k=0

akiakjw(ek) (8)

where ai denotes the i-th column vector of A. Then the
similarity between nodes vi and vj is simply 〈ai, aj〉w.

The problem of computing f : V → V ′ is now reduced
to the weighted matching problem if f maps at most two
nodes to each cluster in V ′. Let us define the metric closure
M(G) = (EM , V, ζ) of G = (E, V,w) as follows:

• M(G) is an ordinary graph: |e| = 2 for each e ∈ EM .

• vi and vj are connected by an edge eij ∈ EM if and
only if they are neighbors.

• If eij is the edge connecting nodes vi and vj , then
ζ(eij) = 〈ai, aj〉w.

An optimal weighted matching of M(G) matches each node in
V to an adjacent node, so that the total weight of the matched
edges is maximized. Since we wish to cluster nodes with a high
level of similarities between them, we set f(vi) = f(vj) =
min{i, j} whenever vi is matched to vj under the weighted
matching problem. We set f(v) = v if v is left unmatched.

I I I . R E L AT E D W O R K

There has been an extensive research on the subject of
weighted matching. For example, several parallel algorithms for
the weighted matching problem are described in [7], [8]. Both
papers assume that the adjacency lists for the nodes are available
for constant-time lookups. This assumption holds for ordinary
graphs – it takes a constant time to find all neighbors of a given
node. However, the assumption fails to hold for hypergraphs.
Since adjacency in hypergraphs is defined only implicitly, to
find neighbors of v, we must scan all hyperedges containing v
and collect the nodes in those hyperedges. Hence, it takes at
least linear time to look up the neighbors. Auer [5] adapted
weighted matching algorithms to hypergraph partitioning. A

978-1-4673-9286-0/15/$31.00 ©2015 IEEE



class of approximate matching algorithms [9], [10] is coupled
with a class of neighbor-finding algorithms. The adjacency lists
are computed as they are needed and the metric closure is only
implicitly accessed. Some of the matching and neighbor-finding
algorithms are inherently sequential, however.

Çatalyürek et. al. [11] presented two parallel algorithms for
hypergraph coarsening on multi-core CPUs. One uses atomic
lock operations to prevent inconsistent matching decisions
made by multiple threads. Another allows threads perform
matchings as they would in a sequential setting and later
resolves incompatible matchings later. Both algorithms achieve
a linear speedup with respect to the number of physical CPU
cores. The algorithms must be modified significantly for GPUs,
however, because they operate under the assumption that threads
can execute different strings of instructions. This assumption
is true for multi-core CPUs but not for GPUs, where hardware
threads are not as independent. We shall present a way to
overcome this limitation in Section V.

I V. A N A L G O R I T H M F O R H Y P E R G R A P H
C O A R S E N I N G

We first describe a sequential implementation of hypergraph
coarsening. The implementation consists of two algorithms:
the Mondriaan algorithm and the Greedy matching algorithm.

A. Mondriaan algorithm

The Mondriaan algorithm [5], described in Figure 3,
computes the list of all neighbors vk of a given node vj and
the associated similarities 〈vj , vk〉w. Rather than computing
〈vj , vk〉w for all columns k, we exploit the sparse representation
of the matrix A. First, we scan the nonzero entries of the j-th
column aj to construct a list of all hyperedges that contain
vj . Second, for each hyperedge ei containing vj , we scan all
nonzero entries of ei to construct a list of all nodes vk in ei. If
both vk and vj are in ei, then the nodes share one hyperedge
and the similarity score S(k) is incremented by w(ei). We
repeat this process for all other hyperedges ei’s, so that each
S(k) would eventually contain the total weighted sum of all
hyperedges containing both vk and vj , namely 〈vk, vj〉w.

B. Greedy matching algorithm

A greedy approach to matching is outlined in Figure 4. In
this algorithm each vj is matched to the neighbor vK most
similar to it. As soon as vj and vK are matched, they are
removed from the pool of nodes available for matching.

V. G P U I M P L E M E N TAT I O N

A. GPU fundamentals

In recent years, GPUs have gained popularity as a general-
purpose parallel accelerator. GPUs adopt a many-core archi-
tecture where a large number of hardware threads deliver a
high instruction throughput. To simplify control logic, GPUs
adopt the single-instruction-multiple-data (SIMD) paradigm
where a group of hardware threads executes an identical set of
instructions on multiple portions of data.

In particular, hardware threads on NVIDIA GPUs are
organized in warps, or units of 32 threads. Threads in the

Input: A sparse matrix A induced by G = (E, V,w); the
associated weight function w; the index j of the node vj
whose neighbors are to be computed; and an array mate
whose k-th entry gives the index of the node to which vk
is currently matched (mate(k) = −1 if unmatched yet).

Output: A set V of unmatched neighbors of node vj ; and an
array S where S(k) = 〈aj , ak〉w

1: procedure M O N D R I A A N(A,w, j,mate)
2: S(k)← 0 for all 0 ≤ k < n
3: for each row index i for which aij = 1 do
4: for each column index k for which aik = 1 do
5: if mate(k) = −1 and k 6= j then

. node vk has not been matched yet
and shares hyperedge ei with node vj

6: if S(k) = 0 then
7: V ← V ∪ {k}
8: end if
9: S(k)← S(k) + w(ei)

10: end if
11: end for
12: end for
13: return (V, S)
14: end procedure

Fig. 3. The sequential Mondriaan neighbor-finding algorithm

Input: A sparse matrix A induced by G = (E, V,w); and the
associated weight function w

Output: An array mate whose k-th entry is the index of the
node vk is being paired with (mate(k) = −1 if unmatched)

1: procedure C O M P U T E - M AT C H I N G(A,w)
2: mate(j)← −1 for all 0 ≤ j < n
3: for j from 0 to n− 1 do
4: if mate(j) = −1 then
5: (V, S)←M O N D R I A A N(A,w, j,mate)
6: K ← argmaxk S(k)

. vK is the neighbor most similar to vj
7: mate(j)← min{j,K}
8: mate(K)← min{j,K}

. match nodes vj and vK
9: end if

10: end for
11: return mate
12: end procedure

Fig. 4. The sequential greedy matching algorithm

same warp share a single instruction counter. If all threads in a
warp execute an identical instruction on adjacent data elements,
one single vector operation is loaded to the shared instruction
counter. On the other hand, if only some threads in a warp
execute a given instruction depending a specified condition, the
corresponding operation is still loaded to the shared instruction
counter but the remaining threads stall. The inactive threads
become active once the instruction counter receives a new
operation that applies to those threads. Consequently, in cases
where a few threads receive a lion’s share of workload, the
other threads in the same warp remain stalled much of time.
This phenomenon is known as warp divergence and has a
debilitating effect on performance. A detailed coverage of

978-1-4673-9286-0/15/$31.00 ©2015 IEEE



Input: A sparse matrix A induced by G = (E, V,w); the
associated weight function w; the index j of the node vj
whose neighbors are to be found; a function object F , to
be called with the index of each neighbor of vj

1: procedure M O N D R I A A N - PA R A L L E L(A,w, j, F )
2: for each row index i for which aij = 1 in parallel do

. distribute work across warp
3: ω ← 32 . number of threads per warp
4: l← the lane-id of the current thread (0 ≤ l < ω)
5: a← nnz(ei) . # of nonzero entries
6: b←I N C L U S I V E - S U M - S C A N - WA R P(a)
7: S ←S H F L(b, ω − 1)

. # of nonzero entries assigned to current warp
8: b′ ← b− a . convert to exclusive scan
9: L← dS/ωe(l + 1)

10: for z from 0 to ω − 1 do
11: if S H F L(b, z) < L then
12: Er ← z
13: end if
14: end for
15: Ec ← L−S H F L(b′, Er)
16: Sr ←S H F L - U P(Er, 1)
17: Sc ←S H F L - U P(Ec, 1)
18: if l = 0 then
19: Sr ← 0
20: Sc ← 0
21: end if
22: Sr ← Sr+ [thread-id of first thread in this warp]
23: Sc ← Sc+ [thread-id of first thread in this warp]

. Now (Sr, Sc)–(Er, Ec) is the range of indices
for nonzero entries assigned to current thread

24: for each nonzero aik assigned to current thread do
25: Call F(k,w(ei)) . pass weight of hyperedge ei
26: end for
27: end for
28: end procedure

Fig. 5. The parallel Mondriaan algorithm with collaborative task planning

(a) Load as a vector operation

(b) __shfl_down primitive

Fig. 6. Local registers of a warp as a block of memory

warp divergence can be found in [12].

B. Parallel Mondriaan algorithm

We now describe a parallel version of the Mondriaan
algorithm. We begin with assigning one nonzero row to each
worker thread. Using the number of nonzero entries as a proxy

Fig. 7. The matrix representing a simple hypergraph with 8 nodes and 8
hyperedges. The hyperedges containing node 3 are highlighted. The numbers
in the cells indicate the thread to which each entry is assigned.

TABLE I. L O C A L VA R I A B L E S U S E D I N T H E E X A M P L E

Lane ID 0 1 2 3 Lane ID 0 1 2 3
i 1 2 4 6 Er 1 1 2 3
a 1 6 3 2 SHFL(b′, Er) 1 1 7 10
b 1 7 10 12 Ec 2 5 2 2
S 12 12 12 12 Sr 0 1 1 2
b′ 0 1 7 10 Sc 0 2 5 2
dS/ωe 3 3 3 3

L 3 6 9 12

for workload, we see that nonzero rows carry wildly varying
amount of work. To eliminate warp divergence that would
result otherwise, we employ a collaborative planning to even
out workload among the 32 threads in each warp. First, the
32 threads collect all nonzero entries in the 32 nonzero rows
assigned to them. The threads then take equal shares of the
nonzero entries. Each thread carries a range of 2D indices
indicating the set of nonzero entries that it must process. See
Figure 5 for details.

For the collaborative planning step, we employ a family
of compiler primitives known as Shuffle [13], which is im-
plemented in the current version of the CUDA toolkit [14].
Since NVIDIA GPUs operate under the SIMD paradigm, it is
useful to think of local registers as a block of memory cells
rather than an isolated box. A single instruction is essentially a
vector operation acting on a block of cells (see Figure 6a). The
Shuffle primitives let the programmer shuffle the contents of
the block (see Figure 6b). In addition to providing inter-warp
communication, the Shuffle primitives also act as a lightweight,
fine-grained synchronization mechanism — an operation is
applied on a group of 32 threads in a synchronous fashion
with a single hardware instruction. In addition, common
parallel primitives such as reduction and prefix sum are readily
implemented using Shuffle [15].

Consider a simple example in Figure 7. In this example,
we wish to find neighbors of node 3. (For space consideration,
let the warp carry 4 threads instead of the usual 32.) Taking
advantage of sparsity, we only consider hyperedges 1, 2, 4,
and 6. To distribute workload, we collect all nonzero entries
in those hyperedges and divide them into four equal portions.
Since hyperedges 1, 2, 4, and 6 contain 12 nonzero entries
combined, each thread should get three nonzero entries.

The first step is to compute a fair share of nonzero entries
for each thread. We treat local variables as arrays indexed by
lane ID. Let a(l) be the number of nonzero entries in the l-th
row, and let b(l) be the number of all nonzero entries combined
in the first l rows (Lines 5-6 of Figure 5). Then b(3) gives the
total number of nonzero entries in the four rows, so set S to

978-1-4673-9286-0/15/$31.00 ©2015 IEEE



be that value (Line 7). Then the fair share is given by dS/ωe.
The array L(·) in Line 9 has a special meaning: number all 12
nonzero entries from 0 to 11, and L(l) would be one past the
index of the last entry being assigned to thread l. For instance,
thread 0 would receive entries 0 to 2, thread 1 would receive
entries 3 to 5 and so forth.

Once we find the range of entries being assigned to each
thread, it only remains to convert the range into a pair of
2D coordinates in the matrix. For example, we would like
to locate the row and column containing entry 3. The loop
in Lines 10-14 sets Er(l) to be the largest index for which
b′(Er(l)) < L(l). The effect is that Er(l) gets the row index
of entry L(l). So Er(0) = 1 indicates that entry 3 is in
row 1. Now that the row indices for ranges are known, let
us find the corresponding column indices. Looking at the
exclusive sum scan, we realize that b′(Er(l)) gives the number
of nonzeros in the rows preceding row Er(l), namely rows 0
to Er(l)− 1. Hence, subtracting b′(Er(l)) from L(l) gives the
desired column index for entry L(l) (Line 15). For instance,
entry 3 is in column 2. Once (Er, Ec) is found, shift the arrays
to the right by one to obtain (Sr, Sc) (Lines 16-21).

C. Parallel suitor-matching algorithm

To divide the matching task into parallel pieces, matching
decisions should be made by multiple threads at once. Hence,
we cannot rely on node removal to prevent conflicting decisions,
as described in Figure 4. The parallel algorithms discussed in
Section III adopt the suitor approach, where the nodes make
preliminary matching decisions, and only compatible decisions
are made final. More specifically, each node v makes a tentative
proposal to pair with the node w that is most similar to v. If w
also makes the counter-proposal to pair with v, the proposals
are made final, and v and w are matched. We adopt the queue-
based suitor-matching algorithm presented in [7]: whenever v
is matched with another node, we enqueue v to the queue QC .
After the first round of compatible proposals are processed, the
neighbors of nodes in QC will be considered for additional
matching. See Figure 9 for details.

In the second phase of the algorithm, we make a list of
all neighbors for the nodes in QC . We recompute matching
proposals for those neighbors that tried to pair with nodes in
QC but did not succeed. Since the best candidates have already
been matched away, the neighbors will be matched with their
second-best candidates. From the matching proposals, collect
all compatible ones and make them final. Enqueue to QC all
newly matched nodes so that their unmatched neighbors would
be considered in the following round. Repeat the second phase
of the algorithm until there is no more matching to be made,
i.e. until QC becomes empty.

V I . E X P E R I M E N TA L R E S U LT S

We tested our GPU implementation with sparse matrices
from [16]. All experiments were done on a dual 2.0 GHz
Intel R© Xeon R© E5-2620 CPU and four NVIDIA R© Tesla R© K20c
GPUs with CUDA 6.5. Each GPU has 2,496 cores divided
into 13 streaming multiprocessors and a total memory of 5 GB.
We compare the performance of our GPU implementation with
the sequential implementation of Mondriaan neighbor-finding
algorithm [17]. Other sequential neighbor-finding algorithms
offer better performance but lack parallel counterparts.

TABLE II. D I S T R I B U T I O N O F N O N Z E R O C A R D I N A L I T Y O F
C O L U M N S

Input Min Q1 Median Q3 Max Mean

flickr 1 1 1 4 8549 12
wikipedia 0 0 2 6 75547 12

stanford 0 2 5 9 255 8
stanford-berkeley 0 3 6 12 249 11

TABLE III. S P E E D U P O V E R S E Q U E N T I A L C O A R S E N I N G
A L G O R I T H M [ 1 7 ]

Input GPU (s) Sequential (s) Speedup

flickr 58.69 876.51 14.93
wikipedia 50.42 810.60 16.08

stanford 145.54 65.06 0.45
stanford-berkeley 625.60 40.79 0.07

We observe in Table III that hypergraphs with a long-tailed
distribution of nonzero entries exhibit good speedups. One
of the major factors is the number of nonzero entries in each
column, i.e. the number of hyperedges that contain each node.
In Table II, we see that for all four data sets, over 90% of
the columns have fewer than 32 nonzero entries, i.e. most
nodes belong to fewer than 32 hyperedges. The difference
between the first two sets and the last two is the presence of
heavily connected nodes. The sets flickr and wikipedia
contain so many outliers that the arithmetic mean is far larger
than the median. On the other hand, the sets stanford
and stanford-berkeley do not contain as many outliers.
Unfortunately, our parallel implementation exhibits a good
speedup for the first two sets but not for the last two.

To verify our speculation, we generated a synthetic hy-
pergraph with an extreme long-tailed distribution of nonzero
entries. Let A be a 700,000 × 700,000 sparse matrix with
zeros everywhere except for the first 1,000 columns. Each of
the 1,000 columns have exactly 100,000 entries of 1 randomly
distributed in the column and zeros everywhere else. For this
matrix, our GPU implementation computed the coarsening map
in 262 seconds, whereas the sequential reference in 32,240
seconds!

V I I . C O N N E C T I O N T O I M A G E C L A S S I F I C AT I O N

Recent work in computer vision [3], [4] casts the problem
of unsupervised image classification as that of hypergraph
partitioning. The idea is that hyperedges capture higher-order
relationships among sample images that pairwise connections
do not.

We outline the steps of obtaining a weighted hypergraph
from a given set of images to be classified. For simplicity, we
assume two categories of images.

1) Extract local features of sample images using
transformation-invariant descriptors such as SIFT [18].

2) Pool local features into one summary vector for each
image. The Locality-constrained Linear Coding (LLC)
algorithm [19] first converts local features into short
codes indicating their positions relative to one another.
The codes are then pooled and concatenated to produce
one final summary vector for each picture. The
process is designed such that information relating
the dominant object in the picture is well represented
while extraneous backgrounds and noise are pruned.

978-1-4673-9286-0/15/$31.00 ©2015 IEEE



1: procedure L A M B D A 1(k,inc; j, S,mate,K)
2: l←[thread-id of current thread]
3: max_score← 0
4: max_id← −1
5: if mate(k) = −1 then
6: AT O M I C A D D(S(k),inc)
7: if S(k) > max_score then
8: max_score← S(k)
9: max_id← k

10: end if
11: end if
12: K ← max_id
13: end procedure

14: procedure L A M B D A 2(k, · ; j, S,QI ,mate)
15: if k 6= mate(j) and cand(k) = j

and AT O M I C C A S(S(k), 0, 1) = 0 then
16: Enqueue k to QI

17: end if
18: end procedure

Fig. 8. Helper lambdas (templates for function objects)

3) Compute pairwise distance between nodes (input
pictures) using the associated summary vectors.

4) For each n-th sample, collect k nearest neighbors and
put them in the n-th hyperedge.

5) Assign weights to hypergraphs to reflect the compact-
ness of member nodes [20].

6) Compute a bipartition for the resulting hypergraph.

V I I I . C O N C L U S I O N

This paper presented an accelerated procedure for hyper-
graph coarsening. A novel task planning scheme was proposed
to boost performance on NVIDIA GPUs, where instruction
counters are shared by multiple hardware threads. Our GPU
implementation outperformed a comparable sequential imple-
mentation for hypergraphs which contain heavily-connected
nodes. However, when nodes are evenly connected, our
implementation did not perform as well as expected.

We ascribe the discrepancy to static task allocation: Each
column of A is assigned at least 32 threads. For columns
with many nonzero entries, the threads are fully utilized, while
for columns with nonzero entries fewer than 32, the threads
are under-utilized and thus stall for the lack of work. The
problem occurs because each thread is statically assigned a
single column. Assigning multiple columns to GPU threads
should address this issue. To that end, we are investigating
a more general task allocation strategy which will lead to a
higher level of thread utilization.

A C K N O W L E D G M E N T

The research of Hyunsu Cho was supported by Trinity
College under Student Research Program. The authors would
like to thank NVIDIA Corporation for providing GPUs under
CUDA Teaching Center Program. The authors would also like
to thank Sam Johnson for his assistance with the development
of earlier versions of software.

Input: A sparse matrix A induced by G = (E, V,w); and the
associated weight function w

Output: An array mate whose k-th entry is the index of the
node vk is being paired with (mate(k) = −1 if unmatched)

1: procedure C O M P U T E - M AT C H I N G - PA R A L L E L(A,w)
2: mate(j)← −1 for all 0 ≤ j < n
3: cand(j)← −1 for all 0 ≤ j < n

. array to store tentative matching decisions

. Phase 1
4: for j from 0 to n− 1 do
5: F1 ← L A M B D A 1( · , · ; j, S,mate,K)
6: M O N D R I A A N - PA R A L L E L(A, j, F1)

. after this call, S(k) = 〈aj , ak〉w and
K(l) = argmaxk S(k) for thread l

7: Perform reduction on array K(·) to obtain
K = argmaxk S(k)

8: cand(j)← K
9: end for

10: for j from 0 to n− 1 in parallel do
11: if cand(j) = cand(cand(j)) then

. compatible proposals – match them
12: mate(j)← cand(j)
13: Enqueue j to queue QC

14: end if
15: end for

. Phase 2
16: while Qc is not empty do
17: for j in QC do
18: F2 ← L A M B D A 2( · , · ; j, S,QI ,mate,cand)
19: M O N D R I A A N - PA R A L L E L(A, j, F2)

. after this call, QI contains indices of nodes
that proposed to pair with vj but did not
succeed; and S(k) indicates whether k ∈ QI

20: end for
21: for j in QI do
22: F3 ← L A M B D A 1( · , · ; j, S,mate,K)
23: M O N D R I A A N - PA R A L L E L(A, j, F3)

. after this call, S(k) = 〈aj , ak〉w
for node vk available for matching and
K(l) = argmaxk S(k) for thread l

24: Perform reduction on array K(·) to obtain
K = argmaxk S(k)

25: cand(j)← K
26: end for
27: for j from 0 to n− 1 in parallel do
28: if cand(j) = cand(cand(j)) then

. compatible proposals – match them
29: mate(j)← cand(j)
30: Enqueue j to queue QN

31: end if
32: end for
33: QC ← QN

34: QN ←empty queue
35: QI ←empty queue
36: end while
37: return mate
38: end procedure

Fig. 9. The parallel suitor matching algorithm

978-1-4673-9286-0/15/$31.00 ©2015 IEEE



R E F E R E N C E S

[1] D. A. Papa and I. L. Markov, “Hypergraph partitioning and clustering,”
in Approximation Algorithms and Metaheuristics. CRC Press, 2007.

[2] E. Zheleva, S. Sarawagi, and L. Getoor, “Higher-order graphical models
for classification in social and affiliation networks,” in NIPS Workshop
on Networks Across Disciplines: Theory and Applications, 2010.

[3] Y. Huang, Q. Liu, F. Lv, Y. Gong, and D. Metaxas, “Unsupervised image
categorization by hypergraph partition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 6, pp. 1266–1273, 2011.

[4] J. Yu, D. Tao, and M. Wang, “Adaptive hypergraph learning and
its application in image classification,” IEEE Transactions on Image
Processing, vol. 21, no. 7, pp. 3262–3272, 2012.

[5] B. O. F. Auer, “GPU acceleration of graph matching, clustering, and
partitioning,” Ph.D. dissertation, Utrecht University, 2013.

[6] T. N. Bui and C. Jones, “Finding good approximate vertex and edge
partitions is NP-hard,” Information Processing Letters, vol. 42, no. 3,
pp. 153–159, 1992.

[7] M. Halappanavar, J. Feo, O. Villa, A. Tumeo, and A. Pothen, “Ap-
proximate weighted matching on emerging manycore and multithreaded
architectures,” International Journal of High Performance Computing
Applications, vol. 26, no. 4, pp. 413–430, 2012.

[8] F. Manne and M. Halappanavar, “New effective multithreaded matching
algorithms,” in IEEE International Parallel and Distributed Processing
Symposium, 2014, pp. 519–528.

[9] D. E. Drake and S. Hougardy, “Linear time local improvements for
weighted matchings in graphs,” in Experimental and Efficient Algorithms.
Springer-Verlag, 2003, vol. 2647, pp. 107–119.

[10] J. Maue and P. Sanders, “Engineering algorithms for approximate
weighted matching,” in Experimental Algorithms. Springer-Verlag,
2007, vol. 4525, pp. 242–255.

[11] Ümit V. Çatalyürek, M. Deveci, K. Kaya, and B. Uçar, “Multithreaded
clustering for multi-level hypergraph partitioning,” in IEEE International
Parallel Distributed Processing Symposium, 2012, pp. 848–859.

[12] L. Nyland and S. Jones, “Understanding and using atomic memory
operations,” in GPU Technology Conference, 2013. [Online].
Available: http://on-demand.gputechconf.com/gtc/2013/presentations/
S3101-Atomic-Memory-Operations.pdf

[13] J. Demouth, “Shuffle: Tips and tricks,” in GPU Technology Conference,
2013. [Online]. Available: http://on-demand.gputechconf.com/gtc/2013/
presentations/S3174-Kepler-Shuffle-Tips-Tricks.pdf

[14] CUDA C programming guide. NVIDIA.
[15] The CUB library. NVIDIA.
[16] T. A. Davis and Y. Hu, “The University of Florida sparse

matrix collection,” ACM Transactions on Mathematical Software,
vol. 38, no. 1, pp. 1:1–1:25, 2011. [Online]. Available: http:
//www.cise.ufl.edu/research/sparse/matrices/

[17] R. H. Bisseling, B. F. Auer, A.-J. Yzelman, and D. Pelt. (2014)
User’s guide Mondriaan version 4.0. Utrecht University. [Online].
Available: http://www.staff.science.uu.nl/%7Ebisse101/Mondriaan/Docs/
USERS%5FGUIDE.html

[18] D. Lowe, “Object recognition from local scale-invariant features,” in
IEEE International Conference on Computer Vision, vol. 2, 1999, pp.
1150–1157 vol.2.

[19] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-
constrained linear coding for image classification,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2010.

[20] S. Huang, A. M. Elgammal, and D. Yang, “On the effect of
hyperedge weights on hypergraph learning,” ArXiV, vol. 1410.6736,
2014. [Online]. Available: http://arxiv.org/abs/1410.6736

978-1-4673-9286-0/15/$31.00 ©2015 IEEE




