
GPU ACCELERATED VESSEL SEGMENTATION USING LAPLACIAN
EIGENMAPS

Lin Cheng
Department of Engineering

Trinity College
300 Summit Street

Hartford, CT, United States
email: lin.cheng@trincoll.edu

Hyunsu Cho and Peter A. Yoon
Department of Computer Science

Trinity College
300 Summit Street

Hartford, CT, United States
email: {Hyunsu.Cho, Peter.Yoon}@trincoll.edu

ABSTRACT
Laplacian eigenmap is one of the most widely used tech-
niques to improve cluster-based segmentation of multivari-
ate images. However, one problem with this approach is
its excessive computational requirements, especially when
processing large image datasets. In this paper, we aim to
employ the emerging commodity graphics hardware of
eigenmap-based segmentation. In particular, we present
a highly parallel implementation for vessel segmentation
using Nvidia’s CUDA parallel computing platform. We
demonstrate that segmentation steps such as computing the
weight matrix can be implemented in a highly parallel fash-
ion. In addition, our approach does not require the computa-
tion of the entire spectrum of eigenvalues, which is the most
time-consuming step in eigenmap-based segmentation. In-
stead, we use the Lanczos method to calculate the extreme
eigenvalues in parallel. Our experiments based on vessel
images of various size achieve a speedup up to 14x over the
conventional sequential implementations.

KEY WORDS
Image segmentation, Eigenmap, GPU computing.

1 Introduction

Pattern recognition techniques have been reported to seg-
ment a multivariate image into meaningful regions [1, 2].
In particular, Laplacian eigenmap is recently reported as a
useful technique to improve cluster-based segmentation of
multivariate images [3]. In this approach, the local image
characteristics can be embedded in a high-dimensional fea-
ture space. A low-dimensional map is reconstructed, where
the local image variations are presented in the context of
global image variation. These non-linear projections serve
as inputs to the fuzzy c-means algorithm. The final segmen-
tation is produced by a labeling scheme that works pixel by
pixel.

While experimental results using RGB images demon-
strated the effectiveness and robustness to noise [3], one
problem with these algorithms has been their high compu-
tational requirements for large image data. This presents a
great challenge to image segmentation problems especially
when processing large image datasets. For example, in med-

ical image analysis, detecting and segmenting microvascu-
lature usually utilizes a large set of images obtained from
the medical imaging modality.

One method to address this problem is by parallel com-
puting using a Graphics Processing Unit (GPU) [4, 5, 6].
GPU features substantial arithmetic and memory bandwidth
capabilities, as well as user program interface for general-
purpose computation on graphics hardware. In recent years,
a number of non-graphics-oriented computationally expen-
sive problems have been implemented on GPU, rather than
on clusters of workstations owing to GPU’s growing avail-
ability. Intrinsically, eigenmap-based segmentation algo-
rithms features data-level parallelism with large computa-
tional requirements. This makes it very suitable to be imple-
mented on the GPU.

This work concerns Laplacian eigenmap-based mul-
tivariate image segmentation based on data-parallel GPU
programs. In particular, we aim to employ the emerging
commodity graphics hardware to solve vessel segmentation
problems using high parallel computing power. We imple-
ment eigenmap-based segmentation algorithms on Nvidia’s
Compute Unified Device Architecture (CUDA) platform
for segmenting vessel image data sets. As we describe our
CUDA implementation, we demonstrate that segmentation
steps such as computing the weight matrix are highly par-
allel. As a means to evaluate the algorithms, we test input
images of various size and observe a speedup factor of 14x
for large images.

The paper is organized as follows. In Section II we
briefly review the related theoretical concepts. In Section III
we explain the parallel segmentation on GPU. Results from
numerical experiments are presented in Section IV. In the
last section, conclusions and further research are discussed.

2 Spectral Clustering and Eigenmap

The starting point of the theoretical algorithms is dimension-
ality reduction, especially for intrinsically low-dimensional
data lying in a high-dimensional space.

Classical dimensionality reduction approach has ori-
gins in multidimensional scaling and principal components
analysis (PCA) [7, 8]. Most of these methods do not explic-
itly incorporate the manifold structure the data may possibly

 Proceedings of the IASTED International Conference

February 17 - 19, 2014 Innsbruck, Austria
Parallel and Distributed Computing and Networks (PDCN 2014)

DOI: 10.2316/P.2014.811-012 177

Figure 1: Schematic of the GPU segmentation process

lie in.
The graph Laplacian is a promising approach to com-

pute a low-dimensional representation of the data to pre-
serve local neighborhood information [3]. The manifold
could be approximated by the adjacency graph computed
from the data points [9]. The Laplace operator is approx-
imated by the weighted Laplacian of the adjacency graph
with appropriately assigned weights.

Using the heat equation, the Laplace operator allows
us to choose the weight decay function such that the embed-
ding maps for the data approximate the eigenmaps of the
Laplace operator [9]. [3] used an initial embedding of local
image characteristics in a high-dimensional feature space.
The Laplacian eigenmaps are used to describe, parameter-
ize, and visualize the learned data-manifold.

3 Parallel Segmentation on GPU

In this section, we describe a GPU implementation of the
algorithm to accelerate the multivariate image segmentation
process. The implementation consists of several stages as
illustrated in Fig. 1. Some parts have been implemented
on the CPU because they are not particularly computation-
ally intensive. In the following sections, we give a detailed
description of each stage and our parallel implementation.

3.1 CUDA concepts

Let us first introduce key programming concepts in CUDA.
CPUs and main memory are collectively referred to as the
host whereas GPUs and their on-chip memory are referred
to as the device. A kernel is a routine that executes on the
device. Typically, a CPU core launches a kernel to be run on
a selected GPU device. Since the host and the device com-
municate via the PCI Express channel, each kernel launch
carries a significant amount of overhead. For the same rea-
son, it is expensive to transfer data between the host and
the device. Thus, it is imperative to minimize the number
of kernel launches and the amount of data transfer.

To help programmers best utilize the computational
power of GPU devices, CUDA offers two units of computa-
tion called blocks and threads. Threads constitute the small-
est unit of execution path and keep distinct sets of local vari-

ables. Blocks are logical groups of threads that carry certain
scheduling implications. For instance, threads that belong
to the same block are guaranteed to be scheduled on one
streaming multiprocessor (SM). Hence, it is comparatively
inexpensive to synchronize threads within a block. In fact,
we can issue a compiler intrinsic __syncthreads()
within a kernel to synchronize threads. Each block is also as-
signed a special memory area called shared memory through
which member threads can communicate. Shared memory
has a shorter access time than global memory (i.e. rest of
GPU memory). For more details in CUDA platform, see
[10].

3.2 Generate patches

Given an image to be segmented, we first divide the image
into blocks of equal dimensions (e.g. 4 by 4 pixels). We re-
fer to such blocks as patches. Each patch is given an index
between 0 and N − 1, where N is the number of patches
in the given image. Furthermore, each patch carries two dis-
tinct characteristics: a features vector and a position vector.
A features vector holds the gray-scale values of the pixels
(cf. Fig. 2). A position vector holds the position of the patch
with respect to the patch grid. For the rest of the paper, we
denote xi and pi to represent the features vector and the
position vector of patch i, respectively. Note that this stage
of generating patches will run serially on the CPU because
it requires a direct input from an image file.

Figure 2: Schematic of feature extraction

178

3.3 Generate the adjacency graph

Next, we generate an adjacency graph G over the endpoint
of the features vectors x0,x1, · · · ,xN−1 with the following
properties:

• Two endpoints that are close enough should be con-
nected with an edge.

• An edge carries less weight as its endpoints are far
apart.

To this end, we define the weight matrix W where Wij

represents the edge cost between xi and xj :

Wij =

{
exp

(
−‖xi−xj‖2

Mα2

)
if patches i and j connected

0 otherwise
(1)

where M is the dimension of the patch and α indicates the
relative importance of the feature differences in clustering
decisions.

We probabilistically determine whether two nodes
should be connected or not:

P (patches i and j connected) = exp

(
−‖pi − pj‖2

2β2

)
(2)

where β indicates how much position differences affect clus-
tering decisions.

We use the expected value of weight Wij given by

W ij = exp

(
−‖xi − xj‖2

Mα2

)
exp

(
−‖pi − pj‖2

2β2

)
(3)

The task of computing the weight matrix is embar-
rassingly parallel: there is no data dependency between any
two entries of W . For instance, as long as xu, xv, xw, and
xz are separately stored in the memory, ‖xu − xv‖2 and
‖xw − xz‖2 can be computed independently of each other.

Let us define difference vector dij , a M × 1 vector
whose kth element is given by

dij(k) = (xi(k)− xj(k))
2, 1 ≤ i, j ≤ N − 1. (4)

Similarly, let fij be a 2×1 vector whose kth element is given
by

fij(k) = (pi(k)− pj(k))
2, 1 ≤ i, j ≤ N − 1. (5)

It is crucial to note that the entry sum of dij and fij should
give ‖xi − xj‖2 and ‖pi − pj‖2 respectively.

Let us consider two implementations of computing
entries of W . The first approach explicitly stores the differ-
ence vectors and then employs a parallel primitive known as
binary reduction. Each difference vector is divided into two
groups of equal length, and each GPU thread increments one
element in the first group by the corresponding element in
the second. The first half is then recursively divided so that
eventually the first entry will hold the entry sum (cf. Fig. 3).
This primitive hasO(log2 n) step complexity where n is the

Figure 3: An illustration of binary reduction over 8 elements

(a) dij and fij are explicitly
stored

(b) dij and fij are not explic-
itly stored

Figure 4: The portion of the weight matrix W that each ker-
nel launch computes in two different scenarios. The boxes
with heavy borders represent the way the work is allocated
to the 2D grid of GPU blocks.

number of elements being added. Furthermore, the task of
computing the difference vectors is embarrassingly parallel
and thus easily divided among GPU blocks.

If we were to compute N2 entries of W at once (i.e.
using one kernel launch), we would have to store N2 differ-
ence vectors, occupying M times the space of the weight
matrix. Since a typical image often requires more than
10,000 patches, we can afford to store only N difference
vectors at a time. This means that we have to make O(N)
kernel launches each of which computing one row of W
(cf. Fig. 4a). At the same time, we would not be launching
enough number of blocks to keep the GPU device busy. The
cost is too high to offset the benefit of binary reduction. In
fact, since M is typically 16 (in case of 4-by-4 patches) or
smaller, we do not lose much even if we were to add up the
elements sequentially.

On the other hand, the second approach does not store
the difference vectors and lets each individual thread com-
pute the entry sums sequentially. If we do not store the
difference vectors in the memory, then we can compute
the entirety of W in a single kernel launch. This approach
will help reduce the number of kernel launches and spawn
enough number of GPU blocks to keep the device busy.

We divide the weight matrix W into a 2D grid of
blocks and threads where each thread computes one entry
of the matrix (cf. Fig. 4b). Each thread that is in charge of
W ij computes the entry sums of dij and fij without actu-
ally storing either of the vectors. It does so by sequentially
accumulating the partial sums in a per-thread local variable
(cf. Fig. 5, Routine 1). It is true that we are forgoing the

179

Figure 5: The data access pattern of each thread (i, j) when
we do not store the difference vectors.

Routine 1 Computing the weight matrix W
Given a set of features vectors x0,x1, · · · ,xN−1 and posi-
tion vectors p0,p1, · · · ,pN−1, this routine computes the
weight matrix W . The parameters α and β are given by
par0 and par1 respectively. On exit, the dev_w array
contains W .
__global__ void diff_reduce(double *dev_w, double *feat,

double *pos, int feat_dim, int pos_dim, int par0,
int par1, int n_patch)

{
int i = blockIdx.y * blockDim.y + threadIdx.y;
int j = blockIdx.x * blockDim.x + threadIdx.x;
double feat_dist = 0.0; // running entry sum of d_ij
double pos_dist = 0.0; // running entry sum of f_ij
int feat_offi = i * feat_dim; // offset of x_i
int feat_offj = j * feat_dim; // offset of x_j
int pos_offi = i * pos_dim; // offset of p_i
int pos_offj = j * pos_dim; // offset of p_j
double feat_i, feat_j, pos_i, pos_j, k;
// temporary local variables for entry sum calculation

/* boundary check */
if (i == j || i >= n_patch || j >= n_patch)

return;
/* thread (i, j) computes W_ij */
// get the k-th element of difference vector d_ij
// and add it to feat_dist
for (k = 0; k < feat_dim; k++) {

feat_i = feat[feat_offi + k];
feat_j = feat[feat_offj + k];
feat_dist += (feat_i - feat_j) * (feat_i - feat_j);

}
// get the k-th element of difference vector f_ij
// and add it to pos_dist
for (k = 0; k < pos_dim; k++) {

pos_i = pos[pos_offi + k];
pos_j = pos[pos_offj + k];
pos_dist += (pos_i - pos_j) * (pos_i - pos_j);

}
dev_w[i + j * n_patch]

= exp(-feat_dist / (feat_dim * par0 * par0))

* exp(-pos_dist / (pos_dim * par1 * par1));
}

benefit of binary reduction, but the cost is not too high com-
pared to the performance advantage we gain by reducing
the number of kernel launches down to one. In fact, the sec-
ond approach produces the weight matrix 10 times faster
than the first approach.

3.4 Compute the Laplacian matrix

Our goal is to cluster patches according to their features. We
define this problem in terms of a map [3]. We would like to
map the nodes ofG to points on the real number line so that
connected points stay as close as possible. In other words,
we seek to assign a scalar value yi to each xi such that the
objective function ∑

ij

(yi − yj)2W ij (6)

is minimized. Recall that W ij decays exponentially as xi
and xj grow farther apart. It turns out that finding a map
y = (y0, y1, · · · , yN−1) can be reduced to the eigenvalue
problem Ly = λy where L is the Laplacian matrix [3]. The
Laplacian matrix L is given by

L = I −D−1/2WD−1/2 (7)

where D is a diagonal matrix whose ith diagonal entry is
equal to the entry sum of the ith column of W. To simplify
our discussion, let us denote the diagonal entries of D as
d0, d1, · · · , dN−1.

It is straightforward to compute D. We use a binary
reduction to compute the entry sum of each column of W
and then compute D−1/2 by taking the reciprocal of the
square root of each diagonal entry.

We discuss two approaches to obtaining the Laplacian
matrix L. If we store D as a dense matrix, then we can
easily compute L by making two calls to cublasDsymm
routine of cuBLAS library. The Level 3 routine performs
the general symmetric matrix-matrix operation of the form
C = αAB+βC where eitherA orB is a symmetric matrix
[11].

This approach has a benefit of concise code, but it has
two significant drawbacks. First, it is wasteful to store D as
a dense matrix because all the non-diagonal entries are zero.
GPU memory is still a relatively scarce resource, typically
no more than a few gigabytes. Second, the Level 3 routine
is O(N3) because it assumes all the entries to be nonzero.

Meanwhile, the second approach stores D as a series
of row and column operations. The identity matrix I can be
transformed into D by multiplying the first row by d0, the
second row by d1 and so forth. Hence, the diagonal matrix
is a superposition of N elementary matrices corresponding
to row multiplications:

D =

 1
1

. . .
dN−1

 · · ·
 1

d1

. . .
1

 d0 1

. . .
1

 I.
(8)

By a similar argument, D is also a superposition of N el-
ementary matrices that correspond to column multiplica-
tions:

D = I

 d0 1

. . .
1

 1
d1

. . .
1

 · · ·
 1

1

. . .
dN−1

 .
(9)

180

It follows that multiplying each row i of W by 1/
√
di

and then multiplying each column j of W by 1/
√
dj

should produce the desired product D−1/2WD−1/2. We
obtain the Laplacian matrix L by subtracting the product
D−1/2WD−1/2 from the identity matrix I . This formula-
tion involves 2N vector multiplications and one matrix ad-
dition, bringing the total cost to only O(N2). It represents
an O(N) speedup over the previous approach. Furthermore,
it costs only O(N) in memory space to store the diagonal
matrix D.

In practice, we compute L in-place and overwrite the
content of the matrix W . We do so to conserve scarce GPU
memory. We first compute the product D−1/2WD−1/2 in-
place by applying a series of row and column multiplica-
tions to the matrix W . Then we flip the sign of W and
increment its diagonal entries by 1. See Routine 2 for de-
tails.

The series of row and column multiplications would
normally require 2N calls to a Level 1 routine such as
cublasDscal that performs scalar-vector multiplication.
However, for the particular series of multiplications induced
by a diagonal matrix, the cuBLAS library offers a shorthand:
the routine named cublasDdgmm performs multiplication
by a diagonal matrix, either to the left or to the right [11].
The routine is called exactly once, so it has much less over-
head. The only disadvantage is that the routine is not part
of the standard BLAS interface.

3.5 Compute the eigenvalues and eigenvectors

It remains to solve the eigenvalue problem

Ly = λy. (10)

In general, we solve a symmetric eigenvalue problem by re-
ducing the system matrix into a tridiagonal form via a series
of orthogonal similarity transformations. There are several
well-known methods to extract eigenvalues of a symmet-
ric tridiagonal matrix. In particular, the divide-and-conquer
algorithm is numerically stable and efficient at computing
the full spectrum of eigenvalues of a symmetric tridiagonal
system [12]. This procedure for multiple CPU and GPU
cores has been implemented in the MAGMA library [13].
As it turns out, however, we are mostly interested in the
extreme eigenvalues; the reason is shown in the following
section. A more efficient method exists to compute a few
select extreme eigenvalues.

The Lanczos method is an iterative method that builds
a symmetric tridiagonal matrix T whose spectrum of eigen-
values approximates that of a given symmetric matrix A (cf.
Algorithm 1). The matrix T is the tridiagonal matrix with
αi on the main diagonal and βi on the two subdiagonals.
With sufficient number of iterations, the extreme eigenval-
ues of T approximates their counterpart in A [12]. To ex-
tract the corresponding eigenvectors of A, we first collect
the orthonormal set of Ritz vectors qi into an orthogonal

Routine 2 Computing the Laplacian matrix L

Given the weight matrix W , this routine first computes the
diagonal matrixD and then the Laplacian matrix L. On exit,
the dev_w array contains L.
#define THREADS_PER_BLOCK 128
#define BLOCKS_PER_GRID 2048
void laplacian(double *dev_w, int n_patch)
{

// declare and allocate necessary variables
...

// Compute diagonal matrix Dˆ(-1/2)
diag<<<BLOCKS_PER_GRID, THREADS_PER_BLOCK>>>(dev_d,

dev_w, n_patch);
// W <- Dˆ(-1/2) * W * Dˆ(-1/2)
cublasDdgmm(handle, CUBLAS_SIDE_LEFT, n_patch, n_patch,

dev_w, n_patch, dev_d, 1, dev_w, n_patch);
cublasDdgmm(handle, CUBLAS_SIDE_RIGHT, n_patch, n_patch,

dev_w, n_patch, dev_d, 1, dev_w, n_patch);
// L <- I - W
compute_l<<<BLOCKS_PER_GRID, THREADS_PER_BLOCK>>>(dev_w,

n_patch);
// clean up

...
}
__global__ void diag(double *dev_d, double *dev_w,

int n_patch)
{

int b = blockIdx.x;
int i, j, size;
__shared__ double cache[THREADS_PER_BLOCK];
/* binary reduction computes sum of b-th column */
while (b < n_patch) {

size = THREADS_PER_BLOCK / 2;
i = threadIdx.x;
j = i;
cache[i] = 0.0;
while (j < n_patch) {

// load partial sums into shared memory
cache[i] += dev_w[b * n_patch + j];
j += THREADS_PER_BLOCK;

}
__syncthreads();
// reduce the shared array into one output
while(size != 0) {

if (i < size)
cache[i] += cache[i+size];

__syncthreads();
size /= 2;

}
if (i == 0)

dev_d[b] = 1/sqrt(cache[0]);
__syncthreads();
b += BLOCKS_PER_GRID;

}
}
__global__ void compute_l(double *dev_w, int n_patch)
{

int tid = threadIdx.x + blockIdx.x * blockDim.x;
int N = n_patch * n_patch;
while (tid < N) {

dev_w[tid] =
((tid % (n_patch + 1) == 0)? 1 : 0) - dev_w[tid];

tid += blockDim.x * gridDim.x;
}

}

matrix Qk as follows:

Qk = [q1 q2 · · · qk] (11)

Then we multiply each eigenvector ui of T byQk to the left
to get the corresponding eigenvector vi ofA. In practice, we
compute all of the k eigenvectors simultaneously as follows:

[v1 v2 · · · vk]← Qk[u1 u2 · · · uk] (12)

For many classes of matrices, round-off errors cause

181

Algorithm 1 The Lanczos method [12]
Given a symmetric matrix A and an iteration count k,
this algorithm constructs the entries αi, βi of the sym-
metric tridiagonal T whose extreme eigenvalues approx-
imate those of A. The approximation is accurate if k
is large compared to the number of extreme eigenvalues
sought.

1: β0 ← 0, q0 ← 0, q1 ← a random unit vector
2: for i← 1 to k do
3: z← Aqi
4: αi ← qTi z
5: z← z− αiqi − βi−1qi−1
6: z← z−

∑i−1

j=1
(zTqj)qj , z← z−

∑i−1

j=1
(zTqj)qj

7: βi ← ‖z‖2
8: qi+1 ← z/βi
9: end for

the set of Ritz vectors qi to lose its orthogonality [12, 14].
One effective remedy is to reorthogonalize the vectors by
applying a step of the Gram-Schmidt process shown in Line
6 of Algorithm 1, which eliminates all the components of
z that are parallel to any of q1,q2, · · · ,qi−1. It turns out
that twice is enough to guarantee the orthogonality of z to
q1 through qi−1 [15].

To best utilize BLAS, we express the Gram-Schmidt
step in a matrix form:

z← z−Qi−1QTi−1z (13)

where
Qi−1 = [q1 q2 · · · qi−1] (14)

This formulation neatly translates into two calls to a BLAS
2 routine.

3.6 Compute clustering

The solutions to the eigenvalue problem Ly = λy repre-
sent a map y = (y0, y1, · · · , yN−1) that projects the vectors
x0,x1, · · · ,xN−1 to points on a Euclidean space. Specif-
ically, the number of extreme eigenvectors we use deter-
mines the dimension of the Euclidean space. For now, let us
pick the second-smallest eigenvalue and the corresponding
eigenvector so that the features vectors are projected onto
the one-dimensional real number line. This allows us to pick
a simple clustering algorithm. Since we are segmenting the
given image into two monochrome classes, thresholding is
a good choice. One of the classes will be plotted in black
(to indicate the segmented parts) and others in white.

4 Numerical Experiment

Our testing platform comprised dual 2.0 GHz Intel
Xeon R© CPUs with a total of 64 GB of main memory, one
Tesla K20c graphics card with 5 GB of memory, and CUDA
5.0 runtime running on the Linux operating system. Our ex-
periments used double-precision floating point arithmetic.

Table 1: Performance for various inputs

Cases Fig. 9a Fig. 9b Fig. 9c

Image size (pixels) 256× 96 284× 284 360× 300

Patch size (pixels) 4× 4 4× 4 4× 4

Number of patches 1536 5041 6750

Number of Lanczos iterations 12 48 50

Single-thread CPU (sec) 0.71 7.84 13.90

GPU (sec) 1.45 1.67 1.84

Speedup 0.49× 4.69× 7.55×

Cases Fig. 9d Fig. 9e Fig. 9f

Image size (pixels) 448× 352 612× 372 784× 480

Patch size (pixels) 4× 4 4× 4 4× 4

Number of patches 9856 14229 23520

Number of Lanczos iterations 199 250 250

Single-thread CPU (sec) 42.45 92.95 265.31

GPU (sec) 3.92 8.00 18.87

Speedup 10.83× 11.62× 14.06×

In addition, all the implementations under testing have been
compiled from the sources on our testing platform. We used
ATLAS (Automatically Tuned Linear Algebra Software) as
the reference BLAS implementation.

The GPU implementation delivers larger performance
boosts to larger images (cf. Table 1). Furthermore, the re-
sults (cf. Fig. 9) show accurate segmentation compared to
the original, with the underlying vessel structures well pre-
served.

Let us see which stage benefited the most. For the
largest input (Fig. 9f), the first two stages experienced a
speedup in the order of 100 whereas the eigensolver stage
experienced a speedup of only 5 (cf. Table 2). As a result,
the eigensolver stage occupied 84% of compute time (cf.
Fig 6). This stage consists of many BLAS 1 and BLAS 2
operations, which do not scale up quite readily.

It should be also noted that memory allocation took a
substantially longer time on the GPU. Unlike on the host,
where memory allocation could take anywhere between
0.01 seconds and 3.17 seconds, memory allocation took a
relatively constant time (about 1.43 seconds) on the GPU.
We suspect that the need for communicating over the PCI
Express channel puts a lower bound on the overhead.

To put performance figures in context, we created a
multithreaded CPU implementaion of eigenmap. We focus
on the two stages that received a substantial boost on the
GPU. Certainly, the stages exhibit a strong scaling with re-
spect to the number of CPU cores, experiencing a speedup
of 10 on top of 12 physical cores (cf. Fig. 7 and 8). Unfortu-
nately, the CUDA API does not offer a mechanism to limit
the number of CUDA cores to which work is assigned. The
10x speedup over the multithreaded CPU implementation
looks good enough, however, given that cuBLAS delivers
about 5x speedup over Intel’s Math Kernel Library (MKL)
for ZGEMM [16].

We repeated the experiment using a general symmet-
ric eigenvalue solver instead of the Lanczos method. Other
parts of the implementation were kept the same. Our GPU

182

Table 2: Performance by stages, Fig. 9f

Stages pairweight laplacian eigenvalue malloc

Single-thread CPU (sec) 146.95 24.82 90.01 3.17

GPU (sec) 1.29 0.22 15.85 1.43

Speedup 113.91× 112.82× 5.68× 2.22×

Figure 6: Performance by stages of eigenmap segmentation
on GPU

Figure 7: Performance of pairweight stage on multithreaded
CPU and GPU

Figure 8: Performance of laplacian stage on multithreaded
CPU and GPU

implementation of the Lanczos method performed up to
28 times faster than the routine magma_dsyevdx of the
MAGMA library. This translated into a speedup of 21 over
the total running time.

We also repeated the experiment without reorthogo-
nalizing the Ritz vectors qi. The reorthogonalization step
imposed only a modest 8% penalty on performance.

(a) A test vessel image

(b) A noninvasive capillary-perfusion map (nCPM) of retinal vessels
[17]

(c) A vascular pattern of skeletal muscle in mammals [18]

(d) Another nCPM of retinal vessels [19]

(e) Yet another nCPM of retinal vessels [19]

(f) A high-resolution version of Fig. 9e [19]

Figure 9: Segmented images of various size

5 Conclusion

In this paper we presented an efficient parallel implementa-
tion of Laplacian eigenmap-based vessel segmentation on a
GPU. Our algorithm was also designed to exploit the mas-
sive data parallelism of the underlying hardware when map-

183

ping datasets onto logical block and thread structures. We
demonstrated that virtually all of the segmentation steps
can be done in a highly parallel fashion. These include
weight matrix generation, computing the Laplacian matrix,
solving the associated eigenvalue problem, and clustering.
Our approach also avoids computing the entire spectrum of
eigenpairs by determining the dimension of the projected
Euclidean space using only extreme eigenvectors. Our nu-
merical expriments have shown that the performance of our
GPU-based vessel segmentation procedure outperformed
that of a CPU-based approach by a factor of 14 for large
image datasets. This provides a solid case for GPU-based
image segmentation strategies to overcome high computa-
tional requirements for large multivariate image datasets.

Acknowledgements

The research of Hyunsu Cho was supported by Trinity
College under the Student Research Program. The authors
would like to thank Nvidia Corporation for providing GPUs
under CUDA Teaching Center Program. The authors would
also like to thank Jiajia Zhao for her assistance with the
development of earlier versions of software.

References

[1] J.C. Bezdek, L.O. Hall and L.P. Clarke, Review of MR
image segmentation techniques using pattern recogni-
tion, Medical Physics, 20(4), 1993, 1033-1048.

[2] E. Gokcay, A New Clustering Algorithm for Segmenta-
tion of Magnetic Resonance Images (Gainesville, FL:
University of Florida, 2000). Ph.D. Thesis.

[3] I. Tziakos, N. Laskaris and S. Fotopoulos, Multivari-
ate Image Segmentation Using Laplacian Eigenmaps,
European Signal Processing Conference, Vienna, Aus-
tria, 2004, 945-948.

[4] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A.E. Lefohn and T.J. Purcell, A Survey of
general-purpose computation on graphics hardware,
Computer Graphics Forum, 26(1), 2007, 80-113.

[5] S.S. Samant, J. Xia, P. Muyan-Özçelik and J.D.
Owens, High performance computing for deformable
image registration: Towards a new paradigm in adap-
tive radiotherapy, Medical Physics, 35(8), 2008, 3546-
3553.

[6] P. Harish and P.J. Narayanan, Accelerating large graph
algorithms on the GPU using CUDA, International
Conference on High Performance Computing, Goa, In-
dia, 2007, 197-208.

[7] P. Indyk, Dimensionality reduction techniques for
proximity problems, Annual ACM-SIAM Symposium
on Discrete Algorithms, San Francisco, USA, 2000,
371-378.

[8] P. Indyk, Better algorithms for high-dimensional prox-
imity problems via asymmetric embeddings, Annual
ACM-SIAM Symposium on Discrete Algorithms, San
Francisco, USA, 2003, 539-545.

[9] M. Bernstein, V.D. Silva, J.C. Langford and J.B.
Tenenbaum, Graph approximations to geodesics on
embedded manifolds, Department of Psychology,
Stanford University, 2000. Technical Report.

[10] Nvidia, CUDA C Programming Guide.

[11] Nvidia, cuBLAS Library User Guide.

[12] D. S. Watkins, Fundamentals of Matrix Computations
(New York: John Wiley and Sons Incs., 1991).

[13] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J.
Kurzak, J. Langou, H. Ltaief, P. Luszczek and S. To-
mov, Numerical linear algebra on emerging architec-
tures: The PLASMA and MAGMA projects, Journal
of Physics: Conference Series, 180(1), 2009, 12-37.

[14] J. Demmel, Applied Numerical Linear Algebra
(Philadelphia: SIAM, 1997).

[15] B. Parlett, The Symmetric Eigenvalue Problem (Engle-
wood Cliffs, NJ: Prentice-Hall, 1980).

[16] Nvidia, CUDA Toolkit 5.0 Performance Report.

[17] A.J. Witkin, R.A. Alshareef, S.S. Rezeq, K.M. Sam-
pat, J. Chhablani, D.U. Bartsch, W.R. Freeman, J.A.
Haller and S.J. Garg, Comparative analysis of the reti-
nal microvasculature visualized with fluorescein an-
giography and the retinal function imager, American
Journal of Ophthalmology, 154(5), 901-907.e2.

[18] S. Selinger, The Krogh Cylinder, Rice University,
2004. Student Project. http://www.owlnet.rice.edu/

˜ceng402/proj04/seli/CENG402 Project Files/Blank

Page 2.htm

[19] D.A. Nelson, Z. Burgansky-Eliash, H. Barash, A.
Loewenstein, A. Barak, E. Bartov, T. Rock and A.
Grinvald, High-resolution wide-field imaging of per-
fused capillaries without the use of contrast agent,
Clinical Ophthalmology, 5, 2011, 1095-1106.

184

