
A Memory-Efficient Algorithm for Large-Scale Symmetric
Tridiagonal Eigenvalue Problem on Multi-GPU Systems

Hyunsu Cho and Peter A. Yoon
Department of Computer Science, Trinity College, Hartford, CT, USA

Abstract— Divide-and-conquer algorithm is a numerically
stable and efficient algorithm that computes the eigenvalues
and eigenvectors of a symmetric tridiagonal matrix. We often
face the situation where the input matrix fits into the main
memory but not into the on-chip memory of a GPU device. We
present an out-of-core implementation where only part of the
input matrix is resident in GPU memory at any point in time.
It works independently of the physical size of GPU memory,
handling any size of input as long as it fits into the main
memory. Work is dynamically allocated to multiple GPUs
and CPU cores, taking account of available workspaces
and progress of the algorithm. In addition, it delivers a
performance comparable to that of conventional multi-GPU
implementations for cases where workspaces fit into the GPU
memory.

Keywords: Symmetric eigenvalue problem, parallel computation,
general-purpose GPU computing, CUDA

1. Introduction
Divide-and-conquer algorithm is a widely used algorithm

that computes the eigenvalues and eigenvectors of a sym-
metric tridiagonal matrix. The algorithm is known to be
numerically stable and efficient when computing the full
spectrum of eigenvalues [1]. Furthermore, any general sym-
metric eigenvalue problem can be reduced to tridiagonal form
via a series of orthogonal similarity transformations. When
combined with a deflation step, the algorithm delivers a good
overall performance: it takes about O(n2.3) flops to compute
all the eigenvalues and eigenvectors of an n× n matrix [2].

The idea of using multiple GPUs to handle large matrices
is not new. In particular, MAGMA library [3], [4] features a
hybrid implementation of divide-and-conquer that uses both
multiple GPUs and multicore CPUs. It off-loads the most
costly portion of the algorithm, matrix multiplication, to the
GPUs. Each GPU memory stores a part of the workspace,
which is periodically synchronized with its counterpart in the
main memory. This approach works well most of the time on
multi-GPU systems, as intermediate workspaces do not grow
beyond the total memory of all the GPU devices installed.
Unfortunately, for very large input matrices, intermediate
matrices may fit into the main memory but still exceed the
total size of GPU memory. This situation may arise because
GPU memory is limited in size compared to main memory.
For instance, one NVIDIA® Tesla® K20c supports only about

5 GB of memory. Intermediate workspaces still have to be
loaded to GPU memory, so that GPU cores can make high-
bandwidth accesses.

We overcome this limitation by fixing the size of GPU
workspaces to be less than available GPU memory. De-
pending on the size of GPU memory and that of the main
memory, we dynamically compute the partition for block
matrix multiplication. With fixed GPU workspaces, we are
free to deal with any large input matrices, as long as the
input matrix fits into the main memory. We confirmed that
our implementation could handle input size as large as
50,000×50,000.

The overhead required by dynamic partition can be prob-
lematic for small subproblems. A general criterion is whether
a subproblem fits entirely into a single GPU’s memory. For
small problems, it is better to avoid block matrix multipli-
cation entirely. Instead, we let GPU devices solve multiple
subproblems in parallel. This has an additional benefit of
hiding latency in memory transfer, which is relatively costly
compared to the small computational work involved.

This paper is organized as follows: Section 2 presents a
brief overview of divide-and-conquer algorithm for symmet-
ric tridiagional eigenvalue problem.

Section 3 discusses how tasks should be organized in
modules. Section 4 discusses important details regarding our
out-of-core implementation on multi-GPU systems. Finally,
Section 5 presents performance results and analysis.

2. Divide-and-conquer algorithm
Let A be an n × n symmetric tridiagonal matrix where

the diagonal and subdiagonal entries are given by ai’s and
bi’s respectively. The idea is to transform A into a sum of
two smaller tridiagonal systems:

A =

[
Ã1

Ã2

]
+H = Ã+H (1)

where

Ã1 =

a1 b1

b1
.
. . . am−1 bm−1

bm−1 am − bm

568 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 |

Ã2 =

am+1 − bm bm+1

bm+1
.
. . . an−1 bn−1

bn−1 an

and

H =

 bm bm
bm bm

 .
Now that we managed to divide the given eigenvalue

problem into two problems of smaller size, we can merge
the eigendecompositions of Ã1 and Ã2 to get the eigende-
composition of Ã.

Suppose we have obtained the eigendecomposition of Ã1

and Ã2, that is, we compute orthogonal matrices Q̃1, Q̃2 and
diagonal matrices D̃1, D̃2 such that

Ã1 = Q̃1D̃1Q̃
T
1 and Ã2 = Q̃2D̃2Q̃

T
2 .

Then the eigendecomposition of Ã is given by

Ã =

[
Ã1

Ã2

]
= Q̃D̃Q̃T

where

Q̃ =

[
Q̃1

Q̃2

]
and D̃ =

[
D̃1

D̃2

]
.

The remainder of the algorithm involves transforming the
eigenvalues and eigenvectors to take account of the matrix
H being added on the right-hand side. To compute the
eigendecomposition of A from that of Ã, we perform a
process known as rank-one update [1].

The matrix H , also known as the rank-one modifier, is a
product of form

H = ρwwT

where

ρ = bm and w =

[
em
e1

]
.

Here, ei is the ith elementary unit vector. It follows that

A = Q̃D̃Q̃T + ρwwT

= Q̃(D̃ + Q̃T ρwwT Q̃)Q̃T

= Q̃(D̃ + ρzzT)Q̃T (2)

where

z = Q̃Tw =

[
last column of Q̃T1
first column of Q̃T2

]
.

Thus, it suffices to compute the eigendecomposition of
the matrix D̃ + ρzzT . If D̃ + ρzzT = Q̂DQ̂T , then the
eigendecomposition of A is given by

A = Q̃(D̃ + ρzzT)Q̃T = Q̃Q̂DQ̂T Q̃T

= QDQT (3)

where Q = Q̃Q̂.
It only remains to find the eigenvalues and eigenvectors

of D̃ + ρzzT . This task consists of three distinct subtasks:

2.1 Perform deflations
Let di’s be the entries of the diagonal matrix D and the

zi’s be the entries of the vector z:

D̃ = diag (d1, d2, · · · , dn) , z = [z1 z2 · · · zn]
T
.

It turns out that, whenever di = di+1 or zi = 0 for some
i, we get an eigenvalue for free: di itself is an eigenvalue
of D̃+ ρzzT . Furthermore, the corresponding eigenvector is
either ei (if zi = 0) or some rotation of it (if di = di+1).
This phenomenon is called deflation. In practice, deflations
occur frequently, when |di − di+1| or |zi| is small enough.

The major saving occurs in the matrix multiplication step
in (3): we can leave out the i-th eigenvalue and eigenvector
from the computation of Q̂ [2]. Instead, we infer their values
directly from Q̃, which is already available. Hence, we skip
the corresponding rows and columns when we compute
Q = Q̃Q̂. In this way, matrix multiplication in (3) can be
accelerated so that the whole algorithm costs only O(n2.3)
in time instead of O(n3).

Let T+ρuuT be the submatrix that is the result of deflating
the matrix D̃ + ρzzT :

T = diag (δ1, δ2, · · · , δk) and u = [ζ1 ζ2 · · · ζk]
T

where δ1 < δ2 < · · · < δk and ζi 6= 0 for all i.

2.2 Computing the eigenvalues via the secular
equation

Let λ be an eigenvalue of T + ρuuT with an associated
eigenvector q. Then by definition,

(T + ρuuT)q = λq, (4)

so that
Tq + ρ(uTq)u = λq (5)

It turns out that uTq 6= 0; otherwise, λ = δi for some i
and ζi = 0, which contradicts the conditions of T + ρuuT .
Similarly, we conclude that λ 6= δi for all i = 1, · · · , k.

Since λ 6= δi for all i, the diagonal matrix T − λI has no
zero entry and its inverse is well defined. With some algebra,
it is possible to show that (5) is equivalent to

1 + ρuT (T − λI)−1u = 0 (6)

This equation is equivalent to a rational equation known as
the secular equation:

1 + ρ
n∑
i=1

ζ2i
δi − λ

= 0 (7)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 569

The k solutions of the secular equation give the eigenvalues
of T + ρuuT . The equation can be solved by a variant of
the Newton-Raphson method in which approximating lines
are replaced with approximating rational asymptotes. Li [5]
lays out the full details of a secular equation solver and
offer solutions to common issues in numerical stability of
the algorithm.

2.3 Computing the eigenvectors
Once we obtain the eigenvalues λi of T + ρuuT , we

compute the corresponding eigenvectors qi. In theory, (T −
λiI)−1u gives an eigenvector of λi:

(T + ρuuT)[(T − λI)−1u]

= ((T − λI) + λI + ρuuT)[(T − λI)−1u]

= λ[(T − λI)−1u] (8)

Unfortunately, two computed eigenvectors are not numeri-
cally orthogonal whenever their associated eigenvalues are
close to each other. Gu and Eisenstat [6] proposed a more
stable way to compute numerically orthogonal eigenvectors
of T+ρuuT . In a nutshell, their approach amounts to solving
an inverse eigenvalue problem: Let λ1, λ2, · · · , λk be the
roots of the secular equation (7). Let û be the vector whose
k entries are given by

ûi =

√√√√√√√√√√√

k∏
j=1

(λj − δi)

ρ
k∏
j=1
j 6=i

(δj − δi)

(9)

Also, let
Λ = diag (λ1, λ2, · · · , λk) .

Then the matrix Λ + ûûT has λ1, λ2, · · · , λk as its eigenval-
ues. Furthermore, (Λ− λiI)−1û gives a numerically stable
eigenvector of each eigenvalue λi.

3. Task organization
Using LAPACK routine dstedc as a guide [7], we orga-

nize divide-and-conquer algorithm in the following modules:
• dlaed0: Split the given problem into 128×128 sub-

problems, performing appropriate rank-one cuts. Then
compute the eigendecomposition of each 128×128
subproblem by calling the QR routine dsteqr. Finally,
let dlaed1 merge the eigendecompositions of adjacent
submatrices until we have the eigendecomposition of
the original matrix.

• dlaed1: Coordinate subtasks necessary to merge
the eigendecompositions of two adjacent submatrices.
Specifically,

– Produce D̃ + ρzzT from A via (2).
– Call dlaed2 to carry out Subtask 2.1

– Call dlaed3 to carry out Subtasks 2.2 and 2.3.
– Back-transform the eigenvector collection Q̂ of D̃+
ρzzT by multiplying with Q̃, as described in (3).

• dlaed2: Perform deflation as given by Subtask 2.1. To
differentiate between deflated eigenvalues and eigenvec-
tors from non-deflated ones, we maintain an ordered list
of eigenvalues [7]. Each time we deflate an eigenvalue,
we remove it from the ordered list and put it at the end
of the list; in other words, we permute the list. Let σ
be the permutation that results from deflation.

• dlaed3: Compute the eigendecomposition D̃ +
ρzzT = Q̂DQ̂T by carrying out Subtasks 2.2 and 2.3.
Now that all the deflated eigenvalues are at the end of
the list, we can focus on the non-deflated portion, i.e.
T + ρuuT . The u vector is given by z with σ applied.
More specifically, dlaed3 does the following steps:

– Call dlaed4 to compute each root λi of the secular
equation.

– Solve the inverse eigenvalue problem to com-
pute numerically orthogonal eigenvectors that cor-
respond to λi’s.

After dlaed3 returns, dlaed1 should re-merge the
deflated eigenvalues back into the middle of the list.

• dlaed4: Compute the i-th root λi of the secular
equation. We use an iteration scheme known as the
Middle Way, where we create a series of approximating
rational functions whose asymptotic poles match those
of the secular equation near λi [5].

Fig. 1: A call graph of dstedc.

4. Parallel Implementation on Multiple
GPUs

The key idea is to fix the size of GPU workspaces so
that we do not run out of GPU memory regardless of the
size of input matrices. Now the only limiting factor is the
main memory, which in many systems is in plentiful supply.
Since the input can be of any size but GPU workspaces are
not, it is crucial to build a dynamic partition of tasks. More
importantly, the nature of work changes as the algorithm
progresses.

Like other algorithms of its kind, divide-and-conquer
algorithm starts with many small base cases (cf. Fig. 2).

570 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 |

As small systems are merged into larger ones, there would
be fewer and fewer subproblems left. In other words, the
work at hand gradually becomes more coarse-grained. Thus,
we need to adapt the way we allocate tasks depending on
the current size of subproblems.

Fig. 2: A schematic of divide-and-conquer algorithm

Before we discuss dynamic allocation of tasks, let us
briefly look at CUDA™, a general-purpose GPU computing
platform.

4.1 CUDA programming environment
Graphical processing units (GPUs) are commodity hard-

ware that were originally designed to accelerate graphics
applications. In recent years, a number of non-graphical, com-
putationally expensive algorithms have been implemented on
GPUs [8]. In particular, NVIDIA offers a general-purpose
API called CUDA™. All recent NVIDIA graphics cards
support this interface.

GPUs are massively parallel processors in which many
small worker threads execute in parallel. While each thread
may not be as powerful as a typical CPU core, the collabora-
tion of many threads helps achieve a high throughput. GPUs
follow a data parallelism paradigm in which each worker
thread executes a similar set of instructions but processes its
own portion of data.

In typical circumstances, a GPU does not launch its
own work. Instead, a CPU thread launches a kernel, or a
subroutine, to be executed on a selected GPU. The CUDA
runtime launches multiple instances of the kernel to be run by
the GPU threads. Kernel launch parameters determine how
many GPU threads are launched and how they are organized.

A defining characteristic of GPU programming is that
GPUs have memory spaces separate from the main memory.
GPUs cannot access the main memory directly; instead,
content has to be copied from the main memory to the GPU
memory first. This step is essential in supporting a large
degree of parallelism, as the GPU processing cores require
a dedicated memory designed for high bandwidth. The data
transfer passes through the PCI Express channel, making
the operation relatively costly. Furthermore, the size of GPU
memory is also a limit; even high-end models carry only a

few gigabytes of dedicated memory. To make matters worse,
on systems with multiple graphics cards installed, the GPUs
have memory spaces separate from one another. Thus, a
CPU thread that copies a buffer into a GPU memory needs
to designate a specific target GPU.

4.2 Dynamic block partition of back-transform
A computational bottleneck in divide-and-conquer algo-

rithm is the back-transformation step at the end of dlaed1.
When only a few eigenvalues deflate, its cost approaches
O(n3) flops, where n is the number of eigenvalues. Fortu-
nately, this step is a BLAS 3 operation and scales well on
GPUs. It is where MAGMA makes most use of GPUs [3],
and we intend to do so as well.

Given an n × k transformation matrix Q̃ and a k × k
collection Q̂ of eigenvectors, the transformed eigenvectors
are given by the product Q̃Q̂. Both n and k change over
time, n being the size of subproblems at the current level
and k being the number of non-deflated eigenvalues. Let G
be the greatest integer such that three G × G matrices fit
into a single GPU device’s memory. Let D be the number
of GPU devices installed. The idea is to pick a multiple of
D that is large enough so that

n

aD
≤ G.

Then a block matrix of dimension n/aD × k/aD will
certainly fit into a single GPU device. Let Aij and Bij be
block matrices of Q̃ and Q̂, respectively, where each Aij is
n/aD×k/aD and each Bij is k/aD×k/aD. We now have
a conformable partition of matrix multiplication.

Fig. 3: Out-of-core block multiplication using 4 GPUs

Since we partitioned the matrix product in multiples of
D, it is straightforward to assign block multiplications to the
D GPU devices (cf. Fig. 3). Notice that no more than one
A block and one B block need to be resident in each GPU
device at any moment. Once each partial product AipBpj
(1 ≤ i, j, p ≤ aD) is computed, the corresponding block
Cij can be incremented by that amount. Matrix multiplication
is supported by cuBLAS [9], a fast GPU implementation of
BLAS interface.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 571

4.3 Fine-grained parallelism
Out-of-core matrix multiplication is fairly inefficient when

the operands are small — there is a constant overhead of
moving block matrices back and forth between the GPU and
CPU memories. In addition, we have to compute the matrix
partition for each subproblem. If we could keep everything
in one place, we would be able to eliminate all the overhead.

To hide the overhead, we let the GPUs solve multiple
subproblems in parallel, each GPU solving one subproblem.
The benefit of such approach is two-fold. First, we avoid
performing out-of-core matrix multiplication when it is not
necessary. Second, we hide the latency of data transfer by
overlaying multiple subproblems on top of each other. For
instance, at the moment when GPU 1 is fetching a workspace
from the main memory, GPU 2 may be decomposing another
matrix. Fig. 4 shows a visual representation of overlapping
merge tasks. The CUDA toolkit incorporates a visual profiler
capable of drawing a timeline of kernel launches [10].

Fig. 4: Overlapping of multiple merge tasks

Unfortunately, certain parts of divide-and-conquer do not
scale well on GPUs. Especially, deflation process involves
construction of permutations and has to be done serially. We
solve this problem by paring each GPU device with a host
thread and forming a compute group. On the other hand,
both secular equations and inverse eigenvalue problems can
be solved efficiently in bulk parallel fashion by GPUs: each
λi can be computed independent of other λj’s, and similarly
with the eigenvectors.

4.4 Profiling
Extending the idea of simultaneous merging, we also make

use of idle CPU cores and form compute groups as well. An
added difficulty is that performance scales at different rates on
GPU-CPU groups and on CPU-only groups. We overcome
this difficulty by constructing linear regression models of
respective compute groups.

Consider GPU-CPU groups first. We define two inde-
pendent variables that affect performance: let X1 be the
subproblem size and X2 be the number of GPU-CPU groups.
The dependent variable is Y , the time it takes to solve a
subproblem of size X1 using X2 groups. We model their
relationship by a power function of form

Y = Xα1
1 Xα2

2 2α3 .

where α1, α2, α3 are parameters to be fitted. Similarly, let
X3 be the number of CPU-only groups and Z be the time it
takes for X3 CPU groups to solve subproblem of size X1:

Z = Xβ1

1 Xβ2

3 2β3 .

The models reflect our intuition to some degree: for instance,
if performance were to scale linearly with respect to the num-
ber of groups, Y would be proportional to X−12 , suggesting
α2 ≈ −1. In addition, the O(n2.3) work complexity of the
algorithm suggests that the scaling of Y is some multiple of
that of X1.

Each of the models is nonlinear on its own, but we can
easily transform it into a linear model. Taking the logarithm
of both sides gives

log Y = α1 logX1 + α2 logX2 + α3

logZ = β1 logX1 + β3 logX3 + β3.

Now the parameters can be fitted using the method of least
squares. Given the parameters, we estimate the ratio R
between performance of GPU-CPU groups and that of CPU-
only groups:

R =
Z

Y
= Xβ1−α1

1 Xβ2

3 X−α2
2 2β3−α3

The ratio enables our implementation to balance loads by
allocating the right number of subproblems to each kind of
compute groups. Our code package incorporates a separate
profiler that runs test matrices and computes the parameters.
It saves the parameters to a configuration file so that the
main subroutine could load them at startup.

5. Performance
Our machine comprises a dual 2.0 GHz Intel® Xeon® E5-

2620 CPU and four NVIDIA® Tesla® K20c graphics cards.
The machine was configured with 64 GB main memory and
5 GB memory for each GPU. Our experiments used double-
precision floating point arithmetic. A package containing the
full source code and the performance profiler is available at
https://github.com/hcho3/dstedc_mgpu.

Prior work such as [3] show that the empirical complexity
of divide-and-conquer algorithm depends on the character-
istics of the input matrix. If a significant portion of the
eigenvalues of a subsystem deflate out, the cost is closer
to O(n2) rather than O(n3). For the purpose of this experi-
ment, we choose a simple random sample λ1, · · · , λn from
the standard normal distribution and generate a symmetric
tridiagonal matrix whose eigenvalues are λi’s. For all the
test matrices we generated this way, 8-12% of eigenvalues
deflate.

Despite the limited amount of memory available on
GPU devices, our implementation was able to handle up
to 50,000×50,000 input matrices, for which outputs and
workspaces combined occupied 85% of the main memory. On
the GPU side, only 3.9 GB out of 5 GB was used. However,

572 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 |

MAGMA’s implementation could not handle input matrices
larger than 36,000. Fig. 5 illustrates how our implementation
handles large matrices stably even in the face of limited GPU
memory.

Table 1: Performance for various test matrices

Performance (sec)

Matrix dimension Hybrid CPUs only Speedup

In-core

1024 0.98 0.34 0.35
2048 1.80 0.93 0.52
4096 3.84 3.83 1.00
8192 9.28 17.43 1.88

Out-of-core

16384 26.91 99.80 3.71
32768 103.00 681.56 6.62
36000 117.38 867.70 7.39
50000 239.36 2278.90 9.52

Fig. 5: Average GPU memory consumption for different input
sizes

To put our implementation’s performance in context, we
created a version that exclusively uses CPU cores (cf. Ta-
ble 1). For smallest input matrices, the CPU-only version
shows better performance. One significant factor is that,
unlike GPUs, CPU cores share the same memory space. So
when the algorithm progresses from one level to next, it is
possible to re-group the CPU cores to form fewer compute
groups. Also, the overhead of setting up multiple CUDA
contexts is absent.

On the other hand, the hybrid version does better
for 8192×8192 input matrices and larger, as the back-
transformation step takes a growing share of flops. At the
same time, matrix multiplication is a bulk parallel task and
scales well on GPUs. The performance profile is illuminating
in that regard: the values of αi’s and βi’s were respectively

α1 = 0.978, α2 = −0.916, α3 = −11.884

β1 = 2.401, β2 = −0.529, β3 = −26.788.

This means that each time the subproblem size was doubled,
GPU-CPU groups spent only twice as much time as it had,

whereas CPU-only groups had to spend 5.3 times as much.
The model produced a good fit for the data points of the
profile, giving R-squared coefficients of 0.984 and 0.996 for
GPU-CPU groups and CPU-only groups, respectively.

6. Conclusion
In this paper, we presented a memory-efficient implementa-

tion of divide-and-conquer algorithm on multi-GPU systems.
Our implementation made use of both multiple GPUs and
multicore CPUs. We overcame the limitations in GPU
memory by fixing GPU workspaces to a size independent of
subproblem size. This approach allowed our implementation
to handle input matrices as large as 50,000×50,000.

Furthermore, despite the added complexity caused by the
fixed size of GPU workspaces, our implementation exhibited
a significant speedup for large input matrices compared to a
version that used multicore CPUs exclusively. At the same
time, we allocated tasks for the fine-grained portion of the
algorithm. By solving multiple subproblems simultaneously,
some on GPUs and some on CPUs, our implementation solve
small problems at a rate comparable to the case where only
CPUs are used.

References
[1] D. S. Watkins, Fundamentals of Matrix Computations (New York:

John Wiley and Sons Incs., 1991).
[2] J. Demmel, Applied Numerical Linear Algebra (Philadelphia: SIAM,

1997).
[3] C. Vomel, S. Tomov and J. Dongarra, Divide and conquer on hy-

brid GPU-accelerated multicore systems, SIAM Journal on Scientific
Computing, 34(2), 2012, C70-C82

[4] MAGMA Library, version 1.4.1. URL: http://icl.cs.utk.edu/magma/
[5] R-C. Li, Solving secular equations stably and efficiently, LAPACK

Working Notes, 1994.
[6] M. Gu, S.C. Eisenstat, A stable and efficient algorithm for the rank-

one modification of the symmetric eigenproblem, SIAM Journal on
Matrix Analysis and Applications, 15(4), 1994, 1266-1276

[7] J. Rutter, A serial implementation of Cuppen’s divide and conquer
algorithm for the symmetric eigenvalue problem, LAPACK Working
Notes, 1994.

[8] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Pro-
cessors: A Hands-on Approach (Burlington, MA : Morgan Kaufmann
Publishers, 2010).

[9] NVIDIA, cuBLAS Library User Guide.
http://docs.nvidia.com/cuda/pdf/ CUBLAS_Library.pdf.

[10] NVIDIA, Profiler User’s Guide. http://docs.nvidia.com/cuda/pdf/
CUDA_Profiler_Users_Guide.pdf

[11] J. Dongarra, T. Dong, M. Gates, A. Haidar, S. Tomov, I. Yamazaki,
MAGMA: a new generation of linear algebra library for GPU and
multicore architectures, Supercomputing, Salt Lake City, Utah, 2012.

[12] I. Yamazaki, T. Dong, R. Solca, S. Tomov, J. Dongarra and T.
Schulthess, Tridiagonalization of a dense symmetric matrix on multiple
GPUs and its application to symmetric eigenvalue problems, Concur-
rency and Computation: Practice and Experience, published online,
2013, DOI: 10.1002/cpe.3152

[13] NVIDIA, CUDA C Programming Guide.
[14] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,

H. Ltaief, P. Luszczek and S. Tomov, Numerical linear algebra on
emerging architectures: The PLASMA and MAGMA projects, Journal
of Physics: Conference Series, 180(1), 2009, 12-37.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 573

