Proceedings of the IASTED International Conference
Parallel and Distributed Computing and Systems (PDCS 2012)
November 12 - 14, 2012 Las Vegas, USA

AN EFFICIENT OUT-OF-CORE IMPLEMENTATION OF BLOCK
CHOLESKY DECOMPOSITION ON A MULTI-GPU SYSTEM

Lin Cheng
Department of Engineering
Trinity College
300 Summit Street
Hartford, CT 06106 USA
Lin.Cheng@trincoll.edu

ABSTRACT

The Cholesky decomposition is one of the most efficient
preconditioners to iterative schemes for solving linear sys-
tems such as the conjugate gradient method. However, we
are often faced with situations where a linear system ex-
ceeds the capacity of existing memory. In this paper we
present an efficient out-of-core implementation of the block
Cholesky decomposition on a multi-GPU system, which
will be able to handle linear systems of arbitrary size. Our
implementation exploits in a streamlined fashion three core
memory systems: GPU memory, CPU host memory, and
virtual memory on the disk. We also demonstrate that in-
corporating memory traffic reduction, efficient data allo-
cation and task overlapping is critical in optimizing per-
formance. Our experiment shows that our implementation
outperforms a multi-core CPU version by at least a factor
of 30 for large matrices. We have also successfully applied
our work to image segmentation.

KEY WORDS
Cholesky decomposition, general-purpose GPU comput-
ing, image segmentation

1 Introduction

Cholesky decomposition is one of the most widely used
matrix factorization methods to solve linear systems of the
form Az = b, whereA is symmetric positive definite. The
Cholesky decomposition is known to be numerically stable
because of its diagonal dominance and requires fewer op-
erations than other direct methods [1]. This type of system
arises in a number of applications areas including medical
imaging, radars, and sonars.

Our main contribution of this paper is to develop an
efficient out-of-core implementation of Cholesky decom-
position using multiple graphics processing units (GPUS),
when the given linear system exceeds the amount of avail-
able memory space. General-purpose GPU computing has
been proven effective in accelerating scientific computa-
tions in recent years [5, 8]. It allows a high-level of data
parallelism which is suitable for computing matrix factor-
izations such as Cholesky decompoasition.

In our approach, we seek to minimize overhead asso-

DOI: 10.2316/P.2012.789-010 1

Hyunsu Cho, Peter Yoon, and Jiajia Zhao
Department of Computer Science

Trinity College
300 Summit Street
Hartford, CT 06106 USA

{Hyunsu.Cho, Peter.Yoon, Jiajia.ZHa@trincoll.edu

ciated with data transfer among different memory spaces,
including device memory, host memory, and virtual mem-
ory space on the disk. To this end, we use a block ver-
sion of outer-product formulation of Cholesky decomposi-
tion [3]. Using this form, each block can be operated inde-
pendently of one another. We implemented our algorithm
using CUDA, a parallel computing platform for the GPUs
developed by Nvidia [7]. We also incorporated block oper-
ations of CUBLAS library, a linear algebra package highly
optimized for CUDA [6].

In our multi-GPU implementation, each GPU is as-
signed only part of the matrix it needs to process. In terms
of mapping, we evenly distribute computations on multi-
ple GPUs. As a result, our out-of-core algorithm requires a
significant amount of inter-GPU communication, and CPU
must coordinate all the necessary communications between
devices. We discuss our central strategies to reduce the
amount and communication cost of inter-device memory
traffic. To enhance the performance even further, we em-
ploy techniques such as task overlapping, look-ahead strat-
egy, and peer-to-peer communication.

This paper is organized as follows: in the follow-
ing section we discuss the implementation details of block
Cholesky decomposition on a multi-GPU environment.
Section 3 demonstrates how our work exploits the virtual
memory on the disk. In Section 4 we present the perfor-
mance results of our implementation. Finally, we conclude
in Section 5.

2 Paralle Implementation

We first introduce the basic concept of GPU computing fol-
lowed by a brief description of a block Cholesky decompo-
sition algorithm. We also present a detailed parallel imple-
mentation on a multi-GPU system.

2.1 GPU Computing and CUDA

For our parallel implementation of block Cholesky algo-
rithm, we seek to exploit a massive computing power of
GPUs. Though originally designed for graphics-intensive
applications, GPUs can be highly optimized for massively

parallel numerical applications. GPUs comprise a large
number of small computing cores and offer an excellent
environment for fine-grain parallelism, where overall exe-
cution throughput is more important than the speed of indi-
vidual cores [5].

During the past several years, the popularity of GPUs
in general-purpose computing in addition to the graph-
ics applications has grown significantly mainly because
of their cost efficiency. CUDA played an integral role in
general-purpose programming using GPUs. Unlike other
graphical APIs such as Open@land Direct3[¥, CUDA
offers a highly flexible interface that supports a variety of
computations [5].

CPUs and main system memory are often referred as
the host while GPUs are referred afevices. A kernel is
a routine that executes on a device. On the CUDA plat-
form, we add qualifiers to an ordinary C function to de-
fine a kernel. Those kernels designated ag obal __
can be invoked only by the host, while those qualified by
__devi ce__ can be called only by a kernel [8]. In other
words, devices begin their execution paths agh obal __
kernel.

To effectively exploit data parallelism, CUDA uses
two units of tasks calledlocks andthreads. A GPU device
assigns a copy of kernel code to each block. GPU blocks
share identical kernel instructions but maintain a distinct
list of local variables. Each block is split into threads,
which execute concurrently. But unlike blocks within a
device, threads within a block may share variables. Also,
a device kernel can easily synchronize threads within a
block, whereas only the host can synchronize blocks within
a device.

A multi-GPU system requires additional attention.
First of all, GPU devices maintain separate lists of kernel
invocations. Each kernel invocation applies to one device
only. One effective way to coordinate kernel launches on
multiple devices is to use host threads. By using multiple
host threads, we can concurrently generate kernel requests
to all devices. We use the POSIX threads standard to create
host threads.

In addition, unlike CPU cores, GPU devices do not
share their memory. Unless the problem at hand contains
no data dependency, we need devices to communicate with
one another. A conventional method is to copy the data
from the sender device to the host and then to the recip-
ient device. To make this data transfer more efficient,
CUDA offers a new way of inter-device communication
with higher throughputpeer-to-peer memory copy. Un-
like the conventional approach, which involves two mem-
ory transfers, the new approach involves only one. The data
is not transferred back to the host but directly between de-
vices. One important limitation is that peer-to-peer mem-
ory copy is not always feasible. In many motherboards,
PCI Express channels are divided into groups of two. Peer-
to-peer copy is currently infeasible across separate groups.
In such cases, it is necessary to perform memory transfer
via the host.

2.2 Block Cholesky Decomposition

Supposéd is ann x n symmetric positive definite matrix.
The Cholesky facto€ of A is the upper triangular matrix
such that

A=G"G
In this paper we consider a block version of the outer-form
Cholesky decomposition algorithm because it is suitable
for parallel implementation. We describe the algorithm to
compute Cholesky decomposition in three phases:

Algorithm 1 Block Cholesky: Outer Product Form [1]

Given ann x n symmetric positive definite matrix
A, we divide A into a g x ¢ grid of square sub-
matrices of identical dimensions. Let(; ;) be the
(i,7)th submatrix inA. (Note that we use a 0-based
indexing.) Also, letR; be the set of submatrices
Alrekys Aksk+1)s+ » A(k,q—1) andhy, be the set of sub-
matrices A k1), Ak, k42> s Akg—1)- Let A be
the union of Ryy1, Rkyo, -+, Rg—1 (cf. Figure 1).
Finally, let chol(B) denote the non-block version of
Cholesky decomposition on symmetric positive defi-
nite matrix B. The following algorithm computes the
Cholesky factor ofA:

for k=0toq—1do
/* Phase | */
A(k,k) < ChOl(A(kyk))

/* Phase Il */
forc+ k+1tog—1do
-T
A,y < Aoy Alkoo)
end for

/* Phase Il */
forr<~ k+1tog—1do
forc+rtog—1do
Aoy < Agre) = Aoy Atko)
end for
end for
end for

We make the following observations from the algorithm:

e Each phase must wait for the previous phase to com-
plete. Any two phases of one iteration cannot be over-
lapped.

e Phase | might prove to be a computational bottleneck.
Since the data involved in Phase | is comparatively
small (only as large as one submatrix), Phase | cannot
gain as much speedup from data parallelism as Phase
Il and Phase lII.

e Since the submatrix size is relatively small in practice
(e.g.,128 x 128), it is advantageous to carry out Phase
| in one device only; otherwise, communication over-
head might outweigh any benefits gained from using

) RO
A1 e Ri
oo R>
LR) R3
A :
Rq-1
k=1

Figure 1: A grid of submatrices (iteratidgh= 1 shown)

multiple devices. On the other hand, Phases Il and IlI
involve significant enough data that it is overall bene-
ficial to allocate those data on multiple devices.

e As mentioned earlier, GPU threads can be easily syn-
chronized within a device kernel. Our implementation
of chol (Ay,1y) divides the loops into unit tasks which
in turn are assigned to multiple GPU threads.

e We do not computel(‘,fk) in Phase Il in practice since

calculating the matrix inverse is costly and numeri-
cally unstable. Instead, we solve the equivalent linear
systemA{k_’k)X = Aq,) (WhereX is a set of un-
known columns) and assign the solutigh back to
A(g,c). Forthis we use theubl asDt r smfunction

in the CUBLAS library.

e Phase Ill mainly involves matrix-matrix multiplica-
tion and addition. CUBLAS provides a Level 3 func-
tion named-ubl as Dgenmfor operations in the form
C + aAB + 5C [6].

2.3 DataAllocation

In Phase IlI, devices receive approximately equal portions
of hy in the current iteratiork (cf. Figure 2). We make
sure that entries in each column stay together, as required
by the linear solver.

In Phase Ill, each oR;(k +1 < i < ¢ — 1) in 4,
is allocated to one device in an alternating fashion (cf. Fig-
ure 3). Our approach allocates a roughly equal amount of
data to each device. Also, we make sure that entries in each
submatrix stay together, as required by the matrix multipli-
cation function.

2.4 Data Communication

Since each device does not have the full picture of the ma-
trix A, we must develop an efficient plan to coordinate the
communication among devices. First of all, each device is
assigned a fixed set @t;’s (cf. Figure 3) and keep modi-
fying different portions of it in different iterations. In other
words, after we copy certaiR;’s in A to each device at the

A0 ||12|]| 3

k=1

Figure 2: Allocating equal portions @f;, to devices (itera-
tion k£ = 1 shown)

very first iteration, they stay on that device throughout the

program execution. As a result, throughout each iteration
k, devices can send back only the portion that requires no
more modification, namely, the modifidg},. The rest of

the data on each device stays and waits to be further modi-
fied by the same device.

The Matrix A on host

Device 1
| 1 |

Figure 3: Allocating submatrices to devices (device
shown)

The transition from Phase Il to Phase Il can be car-
ried out with minimal amount of communication between
the host and devices. Suppose we are in iterdtiofs we
continue to the next iteratioh + 1, the device in charge
of Ri4+1 copies and stores certain portions Bf,; (cf.
Figure 4) to beA 11 x+1) andhyy1. This can be done
efficiently using peer-to-peer memory copy implemented
in CUDA. Inter-device communication through peer-to-
peer chancel achieves a throughput twice as much as one
through the host.

When we move from Phase Il to Phase Ill, we assem-
ble the portions ofh;, scattered among different devices

The Matrix A on host

Device 2

V¥ Phase Il (k = 1)

e I (To be used in Phase I, Il of iteration k = 2) I | cee

Figure 4. CompileA ;1 x41) andhy atiterationk

into a completeh;, by using peer-to-peer memory copy.
Each device broadcasts its portion/of to all the other
devices (cf. Figure 5). As a result, every device has a com-
plete picture ofi;, to be used in Phase lll. Also, at the end
of each iteratiork, the device in charge aRy,, extracts
A(r+1,k+1) and broadcasts it to all the other devices. This
submatrix is then used in the next iteratior- 1.

2.5 Task Overlapping

Our implementation also makes use of task overlapping be-
tween kernel engines and copy engines, a feature supported
by Tesl&® models [8]. We allocate the tasks to two sepa-
rate streams which can operate in parallel. Stré@arfior
example, takes care of kernel invocations, while Stréam
performs memory transfers. This resolves one particular
bottleneck at Phase I: all other computations must wait for
its completion. Phase | of iteratidn+ 1 takes place while
device0 broadcastg,, to other devices (cf. Figure 6). Note
that the operations at the top of the figure are carried out
only once by Devic® at the first iteration.

2.6 Synchronization and Coordination

Our implementation is based on a hybrid computational
model, which involves both CPUs and GPUs. CPUs co-
ordinate the communication between GPUs, while GPUs
perform the actual computations. A common technique is
to spawn multiple CPU threads and assign them GPU de-
vices [8]. Hence, to synchronize all the GPU devices, we
must also synchronize the CPU threads. We use mutexes
and condition variables to place a barrier between Phase I
and Phase Il as we need to make sure that all devices fin-
ish broadcasting to one another. Without such batrrier,

]
|
LA
Device 0 L\ \
soier| [LTV

Device 2 L

Device 3

The complete hx, at Phase IlI

Figure 5: Assemble and broadcagtthrough peer-to-peer
copy

the data would be exposed to unpredictable factors such
as thread scheduling, thereby increasing the chance of cor-
rupting the data. The POSIX threads standard provides for
an API for creating and managing mutexes and condition

variables.

Note that tasks allocated to the same stream are
gueued and executed one by one. Thus, barriers are only
necessary to synchronize across multiple streams. Since
Phases | and Il are assigned to the same stream (Steam 0),
there is an implicit barrier between them.

3 Extension to Disk I/O

We extend our work to handle the cases where the matrix
is too large to fit into both the host and device memory.
Thus, the matrix must be stored in a secondary storage. We
streamline computation over three layers of memory: GPU
memory, host memory, and virtual memory on the disk.

We first divide the matrix in submatrices, each of
which can be loaded to the host memory as necessary. At
each phase, we load several submatrices into the host mem-
ory, modify them on the devices, and write them back to
the disk. We adapt the algorithm in the following way:
Each submatrix should be large enough to reduce latency
involved in file I/O but small enough so that several of
them can be loaded into one GPU memory. An additional
consideration should be given to the size of the host mem-
ory. Since the host memory on most systems is larger

Performed only once by device 0 at the first iteration
- Compute chol(A(0,0) on device 0

- Broadcast A(o,0) to the other devices

- Load different portions of Ato all devices

Stream 0

Stream 1

Phase Il on hk
Kernal Engine

Device 0 copies
A, k) from Device to Host
Copy Engine

Broadcast between
multiple devices to form
a complete hk

Copy Engine (Barrier;

(Barrier)

Phase Ill on Ak
Kernal Engine

The device holding Rk+1

The device holding Rk+1
compiles hk+7 and pass
necessary parts to others
Copy Engine

perform chol(Agk+1,k+1)
Kernal Engine

Device 0 copies hk
from Device to Host
Copy Engine

The device holding Rk+1
broadcasts Agk+1,k+1) to others
Copy Engine

Figure 6: An overview on task overlapping

than the GPU memory, in order to reduce memory latency,
one should read from the disk more submatrices than GPU
memory can hold at one time.

Suppose the system matrikis stored in the virtual
memory on the disk. As in Algorithm Y is divided into a
grid of submatrices (e.gl096 x 4096). Algorithm 2 com-
putes the Cholesky decomposition of A. To reduce latency
for disk access, we develop a more regular access pattern
by reading and writing in large chunks. Specifically, we
employ the following techniques:

e Prefetching: load from the disk as many submatrices
as allowed by the host memory.

e Delayed write: write to the disk only when the pro-
gram finishes modifying all the submatrices that were
loaded to the host memory.

4 Experimental Results
Our testing platform comprised two dual 2.4 GHz Ifitel
Xeon® quad-core CPUs with a total of 16GB of main
memory, four Tesla C2050 graphics cards with 3GB mem-
ory, and CUDA 4.2 runtime system running on the Linux
operating system. Our experiments used double-precision
floating point arithmetics. In addition, all the implementa-
tions under testing have been compiled from the sources on
our testing platform.

We first compared our implementation with the corre-
sponding routine of PLASMA [2], a parallel linear algebra

2000 ‘ : ;
—Our Implementation
---PLASMA
1500t
o
o 1000 K
E .,
= s
500+

16,384
Matrix Size

32,768

Figure 7: Run time of our program and PLASMA

library for scalable multi-core architectures. Our imple-
mentation outperformed PLASMA by a factor 88 for

the largest case tried (cf. Figure 7). We also observed
the performance of our implementation comparable to that
of MAGMA [2], a matrix algebra library on GPUs and
multi-core architectures. For instance, f@d2¥68 x 32768
input, our implementation showed an average throughput
of 244.1 GFLOPs/sec while MAGMA performs &42
GFLOPs/sec. We chose a block sizel®8 x 128 because
MAGMA and PLASMA are optimized for this block size.
Experiments also show that this true for our implementa-
tion as well. But the optimal block size may differ in other

Algorithm 2 Block Cholesky with Disk I/O

Let chol(B) denote the Cholesky decomposition of ma-
trix B using Algorithm 1. Other notations remain the
same.

for k=0toq—1do
/* Phase | */
Load A1) from the disk to the host
All devices partake iy, 1y < chol(A, k)
Write backA ;, i to the disk.

/* Phase Il */
Broadcast4; 1) to all devices.
for for each submatrixd ;. in hy do
Load from the disk submatrices bf,
Allocate the submatrices to devices to compute:
Ak,e) & Al Atke) _ _
Write back the modified submatrices to the disk.
end for

/* Phase Il */
for eachR, in A, do
for each submatrixl,. . in R, do
Load from the disk as many submatricestf

as possible.
Load the necessary portions/of.
Apre) < Aoy = Al Atk
end for
end for
end for

environments.

One of the major advantages of our implementation
is that it is scalable to very large systems. It is limited
only by the amount of virtual memory space on the disk.
For instance, under the current testing environment, our
program successfully computed the Cholesky factor of a
65536 x 65536 matrix in 886 seconds. Note that the matrix
occupies32 GB of memory, exceeding the capacity of the
host memory. For this case, both MAGMA and PLASMA
failed to compute the decomposition due to memaory prob-
lem.

We also applied our parallel implementation to an im-
age segmentation problem. Based on the work of Grady
[4], we considered the random walk segmentation algo-
rithm, a semi-automatic framework that takes user defined
seeds as input and segments regions of interest in an im-
age, such as a tumor. The major computational cost in
performing the random walk segmentation lies in solving
a large sparse linear system. A preconditioned conjugate
gradient method is an attractive choice among many well-
known methods. We first implemented a generalized ver-
sion of the conjugate gradient method to work with images
of arbitrary dimensions. To compute the preconditioner, we
implemented incomplete Cholesky factorization algorithm
presented by Golub and Van Loan [3]. Our implementation

correctly segmented a region of interest (cf. Figures 8 and
9). Note that Figure 9 involves &¥195 x 87195 linear
system that occupieX .6 GB of memory.

Figure 8: The segmented image of an axial CT scan [4]
(192x192). The resulting systen36862 x 36862) required
10.1 GB of memory.

ET

Figure 9: The segmented image of a cré41(x 256). The
original picture was used under permission of Department
of Environmental Science, Trinity College.

5 Conclusion

We presented an efficient out-of-core implementation of
Cholesky factorization on a multi-GPU system. Our im-
plementation handles not only the linear systems which
exceed the capacity of GPU memory, but those systems
which require more than the available main memory. We
have also carefully chosen the block size to minimize mem-
ory and disk latency when host-to-device, device-to-device,
and host-to-disk communications become inevitable. The
numerical experiments show a significant speedup of our
implementation over a multi-core CPU implementation.

In addition, our parallel implementation was successfully
used as a preconditioner to accelerate a conjugate-gradient
based procedure for image segmentation problem.

References

[1] D. S. Watkins,Fundamentals of Matrix Computations
(New York: John Wiley & Sons, Inc., 1991).

[2] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J.
Kurzak, J. Langou, H. Ltaief, P. Luszczek, and S. To-
mov, Numerical linear algebra on emerging architec-
tures: The PLASMA and MAGMA projects]ournal
of Physics: Conference Series Vol. 180, 2009.

[3] G. H. Golub and C. F. Van Loarylatrix Computa-
tions (Baltimore: The Johns Hopkins University Press,
1996).

[4] L. Grady, Random Walks for Image Segmentation,
|EEE Transactions on Pattern Analysis and Machine
Intelligence 28(11), 2006, 1768-1783.

[5] D. B. Kirk and W. W. Hwu, Programming Massively
Parallel Processors. A Hands-on Approach (Burling-
ton, MA : Morgan Kaufmann Publishers, 2010).

[6] Nvidia. "CUDA Toolkit 4.2 CUBLAS Library,” 2012.
[7] Nvidia. "Nvidia CUDA C Programming Guide,” 2012.

[8] J. Sanders and E. Kandr@lJDA By Example: an in-
troduction to general-pur pose GPU programming (Up-
per Saddle River, NJ: Addison-Wesley, 2011).

