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Problem 
Find the eigenvalues and eigenvectors of a symmetric tridiagonal 
matrix T. That is, find its eigendecomposition 

Divide-and-Conquer Algorithm 

Divide-and-conquer algorithm is a numerically stable and efficient 
algorithm that computes the eigenvalues and eigenvectors of a 
symmetric tridiagonal matrix.  A major challenge in implementing 
the algorithm on multiple GPUs is the low compute intensity at the 
bottom of the divide-and-conquer tree, where the subproblem size is 
small. Conventional implementations on multi-GPU systems fall short 
of addressing this issue, leaving GPUs idle much of the time. We 
overcome the problem by merging multiple pairs of subproblems in 
parallel. Preliminary runs show promising results. Our implementation 
running on 4 GPUs shows a 12x speedup over the sequential 
counterpart. Furthermore, it exhibits a meaningful degree of scaling 
with respect to the number of GPUs, running 2x as fast on 4 GPUs as on 
1 GPU. 

1. Divide 

Preliminary Results Perform rank-one update on S to take account of H. 

Use multiple GPUs to merge multiple pairs of 
subproblems in parallel. 
•  Form compute groups.  Each compute group consists of one GPU 

device and one CPU thread. 
•  Each compute group performs one merge task. 

CPU 
GPU 

CPU 
GPU 

CPU 
GPU 

•  Specification: 2 Intel® Xeon® E5-2620 CPUs + 4 NVIDIA® Tesla® 
K20c GPUs + 64 GB main memory + 5GB per-GPU memory 

•  16x speedup over sequential version when run on 4 GPUs 
•  Meaningful degree of scaling with respect to number of GPUs: 

4 GPUs twice as fast as 1 GPU 
•  Memory transfer between host and device accounts for 14.8% of 

compute time. 

Divide the problem until we reach base cases: k x k tridiagonal 
systems where k is small. 

2. Conquer 

3. Merge 

1.  Deflate the eigenvalues and eigenvectors that 
don’t need to be explicitly computed. 

2.  Solve the secular equation to compute the 
eigenvalues. 

3.  Solve an inverse eigenvalue problem to recover 
the eigenvectors of the inner system. 

4.  Recover the eigenvectors of T by computing 
Q = RU, where U has the eigenvectors collected 
in Stage 3. 

5.  Reorder the deflated eigenvalues/eigenvectors 
into their place. 
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Computational Challenge 
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where Q is orthogonal and D is diagonal. D has the eigenvalues in 
the diagonal and Q has the eigenvectors in its columns. 

Decompose the base cases using QR. 

Build a partial solution S from two eigendecompositions. 

The inner system (red) is then decomposed by the following stages. 
See [1] for more details. 

Compute intensity is low when the algorithm has just 
started merging up from the base cases. 
•  The algorithm needs to tackle many small subproblems first before 

proceeding to larger ones. 
•  Small subproblems are not sufficiently bulky to keep multiple 

GPUs busy at the same time. 
•  By the time the algorithm reaches bulky subproblems, it has only a 

few merge operations to do – the number of subproblems halves at 
each level. 

•  Conventional multi-GPU implementations, such as one in the MAGMA 
library [2, 3], split each merge task evenly among multiple GPUs. 

•  A single merge task is often too small and does not give GPUs 
enough work to do. As a result, performance scales poorly with 
respect to the number of GPUs used. 

•  When merge sizes grow large, we may want to switch to the conventional 
scheme where compute groups tackle one merge task at a time. 

•  If subproblems grow too large to fit into GPU memory (e.g. 16384), we have to 
peform the tasks out-of-core. For now, almost all tasks run on CPUs, except 
for matrix multiplication in Stage 4, which is done by GPUs. 

Our Approach 

Future work 
•  Optimize the GPU kernels for secular equation solver (Stage 2). 
•  Divide parallel tasks (Stages 2-4) among CPUs as well as GPUs. 
•  Form additional compute groups with leftover CPU cores. 

References 
[1] J. Demmel. Applied Numerical Linear Algebra, page 216-226 
[2] MAGMA (Matrix Algebra on GPU and Multicore Architectures) Library, version 1.4.1. 
URL: http://icl.cs.utk.edu/magma/ 
[3] C. Vomel, S. Tomov, J. Dongarra. “Divide and Conquer on Hybrid GPU-Accelerated 
Multicore Systems,” SIAM Journal on Scientific Computing, 34 (2), C70-82, April 12, 2012. 

•  Compute intensity is improved as GPUs no longer have to compete 
over limited amount of work; instead, we multiply the workload to 
match the number of GPUs. 
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