
Symmetric Tridiagonal Eigenvalue Problem on Multi-GPU Systems
Hyunsu Cho and Peter Yoon

Department of Computer Science, Trinity College, Hartford, CT

Problem
Find the eigenvalues and eigenvectors of a symmetric tridiagonal
matrix T. That is, find its eigendecomposition

Divide-and-Conquer Algorithm

Divide-and-conquer algorithm is a numerically stable and efficient
algorithm that computes the eigenvalues and eigenvectors of a
symmetric tridiagonal matrix. A major challenge in implementing
the algorithm on multiple GPUs is the low compute intensity at the
bottom of the divide-and-conquer tree, where the subproblem size is
small. Conventional implementations on multi-GPU systems fall short
of addressing this issue, leaving GPUs idle much of the time. We
overcome the problem by merging multiple pairs of subproblems in
parallel. Preliminary runs show promising results. Our implementation
running on 4 GPUs shows a 12x speedup over the sequential
counterpart. Furthermore, it exhibits a meaningful degree of scaling
with respect to the number of GPUs, running 2x as fast on 4 GPUs as on
1 GPU.

1. Divide

Preliminary Results Perform rank-one update on S to take account of H.

Use multiple GPUs to merge multiple pairs of
subproblems in parallel.
•  Form compute groups. Each compute group consists of one GPU

device and one CPU thread.
•  Each compute group performs one merge task.

CPU
GPU

CPU
GPU

CPU
GPU

•  Specification: 2 Intel® Xeon® E5-2620 CPUs + 4 NVIDIA® Tesla®
K20c GPUs + 64 GB main memory + 5GB per-GPU memory

•  16x speedup over sequential version when run on 4 GPUs
•  Meaningful degree of scaling with respect to number of GPUs:

4 GPUs twice as fast as 1 GPU
•  Memory transfer between host and device accounts for 14.8% of

compute time.

Divide the problem until we reach base cases: k x k tridiagonal
systems where k is small.

2. Conquer

3. Merge

1.  Deflate the eigenvalues and eigenvectors that
don’t need to be explicitly computed.

2.  Solve the secular equation to compute the
eigenvalues.

3.  Solve an inverse eigenvalue problem to recover
the eigenvectors of the inner system.

4.  Recover the eigenvectors of T by computing
Q = RU, where U has the eigenvectors collected
in Stage 3.

5.  Reorder the deflated eigenvalues/eigenvectors
into their place.

Inherently serial
(permutation)
Parallelizable

Parallelizable

Highly parallelizable
(BLAS 3)

Inherently serial
(permutation)

Computational Challenge

CPU GPU
Partition

Initiate merge
Stage 1 (deflate)

Stage 5 (reorder)
Conclude merge

Stage 2 (eigenvalues)
Stage 3 (eigenvectors)
Stage 4 (back-transform)

where Q is orthogonal and D is diagonal. D has the eigenvalues in
the diagonal and Q has the eigenvectors in its columns.

Decompose the base cases using QR.

Build a partial solution S from two eigendecompositions.

The inner system (red) is then decomposed by the following stages.
See [1] for more details.

Compute intensity is low when the algorithm has just
started merging up from the base cases.
•  The algorithm needs to tackle many small subproblems first before

proceeding to larger ones.
•  Small subproblems are not sufficiently bulky to keep multiple

GPUs busy at the same time.
•  By the time the algorithm reaches bulky subproblems, it has only a

few merge operations to do – the number of subproblems halves at
each level.

•  Conventional multi-GPU implementations, such as one in the MAGMA
library [2, 3], split each merge task evenly among multiple GPUs.

•  A single merge task is often too small and does not give GPUs
enough work to do. As a result, performance scales poorly with
respect to the number of GPUs used.

•  When merge sizes grow large, we may want to switch to the conventional
scheme where compute groups tackle one merge task at a time.

•  If subproblems grow too large to fit into GPU memory (e.g. 16384), we have to
peform the tasks out-of-core. For now, almost all tasks run on CPUs, except
for matrix multiplication in Stage 4, which is done by GPUs.

Our Approach

Future work
•  Optimize the GPU kernels for secular equation solver (Stage 2).
•  Divide parallel tasks (Stages 2-4) among CPUs as well as GPUs.
•  Form additional compute groups with leftover CPU cores.

References
[1] J. Demmel. Applied Numerical Linear Algebra, page 216-226
[2] MAGMA (Matrix Algebra on GPU and Multicore Architectures) Library, version 1.4.1.
URL: http://icl.cs.utk.edu/magma/
[3] C. Vomel, S. Tomov, J. Dongarra. “Divide and Conquer on Hybrid GPU-Accelerated
Multicore Systems,” SIAM Journal on Scientific Computing, 34 (2), C70-82, April 12, 2012.

•  Compute intensity is improved as GPUs no longer have to compete
over limited amount of work; instead, we multiply the workload to
match the number of GPUs.

contact name

Hyunsu Cho: Hyunsu.Cho@trincoll.edu
Poster

P4257

category: NumeriCal algoritHms & libraries - Nl05

